mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-06-27 09:26:47 +00:00
Merge branch 'dev' into refactor/webui-function
This commit is contained in:
commit
f655417171
@ -88,6 +88,7 @@ module.exports = {
|
|||||||
// imageviewer.js
|
// imageviewer.js
|
||||||
modalPrevImage: "readonly",
|
modalPrevImage: "readonly",
|
||||||
modalNextImage: "readonly",
|
modalNextImage: "readonly",
|
||||||
|
updateModalImageIfVisible: "readonly",
|
||||||
// localStorage.js
|
// localStorage.js
|
||||||
localSet: "readonly",
|
localSet: "readonly",
|
||||||
localGet: "readonly",
|
localGet: "readonly",
|
||||||
|
2
.github/workflows/on_pull_request.yaml
vendored
2
.github/workflows/on_pull_request.yaml
vendored
@ -22,7 +22,7 @@ jobs:
|
|||||||
- name: Install Ruff
|
- name: Install Ruff
|
||||||
run: pip install ruff==0.3.3
|
run: pip install ruff==0.3.3
|
||||||
- name: Run Ruff
|
- name: Run Ruff
|
||||||
run: ruff .
|
run: ruff check .
|
||||||
lint-js:
|
lint-js:
|
||||||
name: eslint
|
name: eslint
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
13
CODEOWNERS
13
CODEOWNERS
@ -1,12 +1 @@
|
|||||||
* @AUTOMATIC1111
|
* @AUTOMATIC1111 @w-e-w @catboxanon
|
||||||
|
|
||||||
# if you were managing a localization and were removed from this file, this is because
|
|
||||||
# the intended way to do localizations now is via extensions. See:
|
|
||||||
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
|
|
||||||
# Make a repo with your localization and since you are still listed as a collaborator
|
|
||||||
# you can add it to the wiki page yourself. This change is because some people complained
|
|
||||||
# the git commit log is cluttered with things unrelated to almost everyone and
|
|
||||||
# because I believe this is the best overall for the project to handle localizations almost
|
|
||||||
# entirely without my oversight.
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -133,7 +133,7 @@ If your system is very new, you need to install python3.11 or python3.10:
|
|||||||
# Ubuntu 24.04
|
# Ubuntu 24.04
|
||||||
sudo add-apt-repository ppa:deadsnakes/ppa
|
sudo add-apt-repository ppa:deadsnakes/ppa
|
||||||
sudo apt update
|
sudo apt update
|
||||||
sudo apt install python3.11
|
sudo apt install python3.11 python3.11-venv
|
||||||
|
|
||||||
# Manjaro/Arch
|
# Manjaro/Arch
|
||||||
sudo pacman -S yay
|
sudo pacman -S yay
|
||||||
@ -148,6 +148,7 @@ python_cmd="python3.11"
|
|||||||
2. Navigate to the directory you would like the webui to be installed and execute the following command:
|
2. Navigate to the directory you would like the webui to be installed and execute the following command:
|
||||||
```bash
|
```bash
|
||||||
wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
|
wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
|
||||||
|
chmod +x webui.sh
|
||||||
```
|
```
|
||||||
Or just clone the repo wherever you want:
|
Or just clone the repo wherever you want:
|
||||||
```bash
|
```bash
|
||||||
|
98
configs/sd_xl_v.yaml
Normal file
98
configs/sd_xl_v.yaml
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
model:
|
||||||
|
target: sgm.models.diffusion.DiffusionEngine
|
||||||
|
params:
|
||||||
|
scale_factor: 0.13025
|
||||||
|
disable_first_stage_autocast: True
|
||||||
|
|
||||||
|
denoiser_config:
|
||||||
|
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
||||||
|
params:
|
||||||
|
num_idx: 1000
|
||||||
|
|
||||||
|
weighting_config:
|
||||||
|
target: sgm.modules.diffusionmodules.denoiser_weighting.VWeighting
|
||||||
|
scaling_config:
|
||||||
|
target: sgm.modules.diffusionmodules.denoiser_scaling.VScaling
|
||||||
|
discretization_config:
|
||||||
|
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
||||||
|
|
||||||
|
network_config:
|
||||||
|
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
adm_in_channels: 2816
|
||||||
|
num_classes: sequential
|
||||||
|
use_checkpoint: False
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [4, 2]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [1, 2, 4]
|
||||||
|
num_head_channels: 64
|
||||||
|
use_spatial_transformer: True
|
||||||
|
use_linear_in_transformer: True
|
||||||
|
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
|
||||||
|
context_dim: 2048
|
||||||
|
spatial_transformer_attn_type: softmax-xformers
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
conditioner_config:
|
||||||
|
target: sgm.modules.GeneralConditioner
|
||||||
|
params:
|
||||||
|
emb_models:
|
||||||
|
# crossattn cond
|
||||||
|
- is_trainable: False
|
||||||
|
input_key: txt
|
||||||
|
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||||
|
params:
|
||||||
|
layer: hidden
|
||||||
|
layer_idx: 11
|
||||||
|
# crossattn and vector cond
|
||||||
|
- is_trainable: False
|
||||||
|
input_key: txt
|
||||||
|
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
|
||||||
|
params:
|
||||||
|
arch: ViT-bigG-14
|
||||||
|
version: laion2b_s39b_b160k
|
||||||
|
freeze: True
|
||||||
|
layer: penultimate
|
||||||
|
always_return_pooled: True
|
||||||
|
legacy: False
|
||||||
|
# vector cond
|
||||||
|
- is_trainable: False
|
||||||
|
input_key: original_size_as_tuple
|
||||||
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||||
|
params:
|
||||||
|
outdim: 256 # multiplied by two
|
||||||
|
# vector cond
|
||||||
|
- is_trainable: False
|
||||||
|
input_key: crop_coords_top_left
|
||||||
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||||
|
params:
|
||||||
|
outdim: 256 # multiplied by two
|
||||||
|
# vector cond
|
||||||
|
- is_trainable: False
|
||||||
|
input_key: target_size_as_tuple
|
||||||
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||||
|
params:
|
||||||
|
outdim: 256 # multiplied by two
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
attn_type: vanilla-xformers
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult: [1, 2, 4, 4]
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
@ -816,7 +816,7 @@ onUiLoaded(async() => {
|
|||||||
// Increase or decrease brush size based on scroll direction
|
// Increase or decrease brush size based on scroll direction
|
||||||
adjustBrushSize(elemId, e.deltaY);
|
adjustBrushSize(elemId, e.deltaY);
|
||||||
}
|
}
|
||||||
});
|
}, {passive: false});
|
||||||
|
|
||||||
// Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element.
|
// Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element.
|
||||||
function handleMoveKeyDown(e) {
|
function handleMoveKeyDown(e) {
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
"""
|
"""
|
||||||
Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE
|
Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE
|
||||||
Warn: The patch works well only if the input image has a width and height that are multiples of 128
|
Warn: The patch works well only if the input image has a width and height that are multiples of 128
|
||||||
Original author: @tfernd Github: https://github.com/tfernd/HyperTile
|
Original author: @tfernd GitHub: https://github.com/tfernd/HyperTile
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
@ -34,14 +34,14 @@ class ScriptPostprocessingAutosizedCrop(scripts_postprocessing.ScriptPostprocess
|
|||||||
with ui_components.InputAccordion(False, label="Auto-sized crop") as enable:
|
with ui_components.InputAccordion(False, label="Auto-sized crop") as enable:
|
||||||
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
|
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="postprocess_multicrop_mindim")
|
mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id=self.elem_id_suffix("postprocess_multicrop_mindim"))
|
||||||
maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="postprocess_multicrop_maxdim")
|
maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id=self.elem_id_suffix("postprocess_multicrop_maxdim"))
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id="postprocess_multicrop_minarea")
|
minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id=self.elem_id_suffix("postprocess_multicrop_minarea"))
|
||||||
maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id="postprocess_multicrop_maxarea")
|
maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id=self.elem_id_suffix("postprocess_multicrop_maxarea"))
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="postprocess_multicrop_objective")
|
objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id=self.elem_id_suffix("postprocess_multicrop_objective"))
|
||||||
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="postprocess_multicrop_threshold")
|
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id=self.elem_id_suffix("postprocess_multicrop_threshold"))
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"enable": enable,
|
"enable": enable,
|
||||||
|
@ -11,10 +11,10 @@ class ScriptPostprocessingFocalCrop(scripts_postprocessing.ScriptPostprocessing)
|
|||||||
|
|
||||||
def ui(self):
|
def ui(self):
|
||||||
with ui_components.InputAccordion(False, label="Auto focal point crop") as enable:
|
with ui_components.InputAccordion(False, label="Auto focal point crop") as enable:
|
||||||
face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_face_weight")
|
face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_focal_crop_face_weight"))
|
||||||
entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_entropy_weight")
|
entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_focal_crop_entropy_weight"))
|
||||||
edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_edges_weight")
|
edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_focal_crop_edges_weight"))
|
||||||
debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
|
debug = gr.Checkbox(label='Create debug image', elem_id=self.elem_id_suffix("train_process_focal_crop_debug"))
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"enable": enable,
|
"enable": enable,
|
||||||
|
@ -35,8 +35,8 @@ class ScriptPostprocessingSplitOversized(scripts_postprocessing.ScriptPostproces
|
|||||||
def ui(self):
|
def ui(self):
|
||||||
with ui_components.InputAccordion(False, label="Split oversized images") as enable:
|
with ui_components.InputAccordion(False, label="Split oversized images") as enable:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
split_threshold = gr.Slider(label='Threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_split_threshold")
|
split_threshold = gr.Slider(label='Threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_split_threshold"))
|
||||||
overlap_ratio = gr.Slider(label='Overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="postprocess_overlap_ratio")
|
overlap_ratio = gr.Slider(label='Overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id=self.elem_id_suffix("postprocess_overlap_ratio"))
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"enable": enable,
|
"enable": enable,
|
||||||
|
@ -1,36 +1,69 @@
|
|||||||
// Stable Diffusion WebUI - Bracket checker
|
// Stable Diffusion WebUI - Bracket Checker
|
||||||
// By Hingashi no Florin/Bwin4L & @akx
|
// By @Bwin4L, @akx, @w-e-w, @Haoming02
|
||||||
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
|
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
|
||||||
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
|
// If there's a mismatch, the keyword counter turns red, and if you hover on it, a tooltip tells you what's wrong.
|
||||||
|
|
||||||
function checkBrackets(textArea, counterElt) {
|
function checkBrackets(textArea, counterElem) {
|
||||||
var counts = {};
|
const pairs = [
|
||||||
(textArea.value.match(/[(){}[\]]/g) || []).forEach(bracket => {
|
['(', ')', 'round brackets'],
|
||||||
counts[bracket] = (counts[bracket] || 0) + 1;
|
['[', ']', 'square brackets'],
|
||||||
});
|
['{', '}', 'curly brackets']
|
||||||
var errors = [];
|
];
|
||||||
|
|
||||||
function checkPair(open, close, kind) {
|
const counts = {};
|
||||||
if (counts[open] !== counts[close]) {
|
const errors = new Set();
|
||||||
errors.push(
|
let i = 0;
|
||||||
`${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.`
|
|
||||||
);
|
while (i < textArea.value.length) {
|
||||||
|
let char = textArea.value[i];
|
||||||
|
let escaped = false;
|
||||||
|
while (char === '\\' && i + 1 < textArea.value.length) {
|
||||||
|
escaped = !escaped;
|
||||||
|
i++;
|
||||||
|
char = textArea.value[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
if (escaped) {
|
||||||
|
i++;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (const [open, close, label] of pairs) {
|
||||||
|
if (char === open) {
|
||||||
|
counts[label] = (counts[label] || 0) + 1;
|
||||||
|
} else if (char === close) {
|
||||||
|
counts[label] = (counts[label] || 0) - 1;
|
||||||
|
if (counts[label] < 0) {
|
||||||
|
errors.add(`Incorrect order of ${label}.`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (const [open, close, label] of pairs) {
|
||||||
|
if (counts[label] == undefined) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (counts[label] > 0) {
|
||||||
|
errors.add(`${open} ... ${close} - Detected ${counts[label]} more opening than closing ${label}.`);
|
||||||
|
} else if (counts[label] < 0) {
|
||||||
|
errors.add(`${open} ... ${close} - Detected ${-counts[label]} more closing than opening ${label}.`);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
checkPair('(', ')', 'round brackets');
|
counterElem.title = [...errors].join('\n');
|
||||||
checkPair('[', ']', 'square brackets');
|
counterElem.classList.toggle('error', errors.size !== 0);
|
||||||
checkPair('{', '}', 'curly brackets');
|
|
||||||
counterElt.title = errors.join('\n');
|
|
||||||
counterElt.classList.toggle('error', errors.length !== 0);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
function setupBracketChecking(id_prompt, id_counter) {
|
function setupBracketChecking(id_prompt, id_counter) {
|
||||||
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
|
const textarea = gradioApp().querySelector(`#${id_prompt} > label > textarea`);
|
||||||
var counter = gradioApp().getElementById(id_counter);
|
const counter = gradioApp().getElementById(id_counter);
|
||||||
|
|
||||||
if (textarea && counter) {
|
if (textarea && counter) {
|
||||||
textarea.addEventListener("input", () => checkBrackets(textarea, counter));
|
onEdit(`${id_prompt}_BracketChecking`, textarea, 400, () => checkBrackets(textarea, counter));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
<div>
|
<div>
|
||||||
<a href="{api_docs}">API</a>
|
<a href="{api_docs}" target="_blank">API</a>
|
||||||
•
|
•
|
||||||
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
|
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">GitHub</a>
|
||||||
•
|
•
|
||||||
<a href="https://gradio.app">Gradio</a>
|
<a href="https://gradio.app">Gradio</a>
|
||||||
•
|
•
|
||||||
|
@ -104,7 +104,7 @@ var contextMenuInit = function() {
|
|||||||
e.preventDefault();
|
e.preventDefault();
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
});
|
}, {passive: false});
|
||||||
});
|
});
|
||||||
eventListenerApplied = true;
|
eventListenerApplied = true;
|
||||||
|
|
||||||
|
@ -201,7 +201,7 @@ function setupExtraNetworks() {
|
|||||||
setupExtraNetworksForTab('img2img');
|
setupExtraNetworksForTab('img2img');
|
||||||
}
|
}
|
||||||
|
|
||||||
var re_extranet = /<([^:^>]+:[^:]+):[\d.]+>(.*)/;
|
var re_extranet = /<([^:^>]+:[^:]+):[\d.]+>(.*)/s;
|
||||||
var re_extranet_g = /<([^:^>]+:[^:]+):[\d.]+>/g;
|
var re_extranet_g = /<([^:^>]+:[^:]+):[\d.]+>/g;
|
||||||
|
|
||||||
var re_extranet_neg = /\(([^:^>]+:[\d.]+)\)/;
|
var re_extranet_neg = /\(([^:^>]+:[\d.]+)\)/;
|
||||||
|
@ -13,6 +13,7 @@ function showModal(event) {
|
|||||||
if (modalImage.style.display === 'none') {
|
if (modalImage.style.display === 'none') {
|
||||||
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
||||||
}
|
}
|
||||||
|
updateModalImage();
|
||||||
lb.style.display = "flex";
|
lb.style.display = "flex";
|
||||||
lb.focus();
|
lb.focus();
|
||||||
|
|
||||||
@ -31,24 +32,30 @@ function negmod(n, m) {
|
|||||||
return ((n % m) + m) % m;
|
return ((n % m) + m) % m;
|
||||||
}
|
}
|
||||||
|
|
||||||
function updateOnBackgroundChange() {
|
function updateModalImage() {
|
||||||
const modalImage = gradioApp().getElementById("modalImage");
|
const modalImage = gradioApp().getElementById("modalImage");
|
||||||
if (modalImage && modalImage.offsetParent) {
|
let currentButton = selected_gallery_button();
|
||||||
let currentButton = selected_gallery_button();
|
let preview = gradioApp().querySelectorAll('.livePreview > img');
|
||||||
let preview = gradioApp().querySelectorAll('.livePreview > img');
|
if (opts.js_live_preview_in_modal_lightbox && preview.length > 0) {
|
||||||
if (opts.js_live_preview_in_modal_lightbox && preview.length > 0) {
|
// show preview image if available
|
||||||
// show preview image if available
|
modalImage.src = preview[preview.length - 1].src;
|
||||||
modalImage.src = preview[preview.length - 1].src;
|
} else if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
|
||||||
} else if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
|
modalImage.src = currentButton.children[0].src;
|
||||||
modalImage.src = currentButton.children[0].src;
|
if (modalImage.style.display === 'none') {
|
||||||
if (modalImage.style.display === 'none') {
|
const modal = gradioApp().getElementById("lightboxModal");
|
||||||
const modal = gradioApp().getElementById("lightboxModal");
|
modal.style.setProperty('background-image', `url(${modalImage.src})`);
|
||||||
modal.style.setProperty('background-image', `url(${modalImage.src})`);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function updateOnBackgroundChange() {
|
||||||
|
const modalImage = gradioApp().getElementById("modalImage");
|
||||||
|
if (modalImage && modalImage.offsetParent) {
|
||||||
|
updateModalImage();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const updateModalImageIfVisible = updateOnBackgroundChange;
|
||||||
|
|
||||||
function modalImageSwitch(offset) {
|
function modalImageSwitch(offset) {
|
||||||
var galleryButtons = all_gallery_buttons();
|
var galleryButtons = all_gallery_buttons();
|
||||||
|
|
||||||
@ -158,6 +165,7 @@ function modalLivePreviewToggle(event) {
|
|||||||
const modalToggleLivePreview = gradioApp().getElementById("modal_toggle_live_preview");
|
const modalToggleLivePreview = gradioApp().getElementById("modal_toggle_live_preview");
|
||||||
opts.js_live_preview_in_modal_lightbox = !opts.js_live_preview_in_modal_lightbox;
|
opts.js_live_preview_in_modal_lightbox = !opts.js_live_preview_in_modal_lightbox;
|
||||||
modalToggleLivePreview.innerHTML = opts.js_live_preview_in_modal_lightbox ? "🗇" : "🗆";
|
modalToggleLivePreview.innerHTML = opts.js_live_preview_in_modal_lightbox ? "🗇" : "🗆";
|
||||||
|
updateModalImageIfVisible();
|
||||||
event.stopPropagation();
|
event.stopPropagation();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -79,11 +79,12 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
|
|||||||
var wakeLock = null;
|
var wakeLock = null;
|
||||||
|
|
||||||
var requestWakeLock = async function() {
|
var requestWakeLock = async function() {
|
||||||
if (!opts.prevent_screen_sleep_during_generation || wakeLock) return;
|
if (!opts.prevent_screen_sleep_during_generation || wakeLock !== null) return;
|
||||||
try {
|
try {
|
||||||
wakeLock = await navigator.wakeLock.request('screen');
|
wakeLock = await navigator.wakeLock.request('screen');
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('Wake Lock is not supported.');
|
console.error('Wake Lock is not supported.');
|
||||||
|
wakeLock = false;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -189,7 +190,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
|
|||||||
livePreview.className = 'livePreview';
|
livePreview.className = 'livePreview';
|
||||||
gallery.insertBefore(livePreview, gallery.firstElementChild);
|
gallery.insertBefore(livePreview, gallery.firstElementChild);
|
||||||
}
|
}
|
||||||
|
updateModalImageIfVisible();
|
||||||
livePreview.appendChild(img);
|
livePreview.appendChild(img);
|
||||||
if (livePreview.childElementCount > 2) {
|
if (livePreview.childElementCount > 2) {
|
||||||
livePreview.removeChild(livePreview.firstElementChild);
|
livePreview.removeChild(livePreview.firstElementChild);
|
||||||
|
@ -124,7 +124,7 @@
|
|||||||
} else {
|
} else {
|
||||||
R.screenX = evt.changedTouches[0].screenX;
|
R.screenX = evt.changedTouches[0].screenX;
|
||||||
}
|
}
|
||||||
});
|
}, {passive: false});
|
||||||
});
|
});
|
||||||
|
|
||||||
resizeHandle.addEventListener('dblclick', onDoubleClick);
|
resizeHandle.addEventListener('dblclick', onDoubleClick);
|
||||||
|
@ -6,6 +6,11 @@ git = launch_utils.git
|
|||||||
index_url = launch_utils.index_url
|
index_url = launch_utils.index_url
|
||||||
dir_repos = launch_utils.dir_repos
|
dir_repos = launch_utils.dir_repos
|
||||||
|
|
||||||
|
if args.uv:
|
||||||
|
from modules.uv_hook import patch
|
||||||
|
patch()
|
||||||
|
|
||||||
|
|
||||||
commit_hash = launch_utils.commit_hash
|
commit_hash = launch_utils.commit_hash
|
||||||
git_tag = launch_utils.git_tag
|
git_tag = launch_utils.git_tag
|
||||||
|
|
||||||
|
@ -122,7 +122,7 @@ def encode_pil_to_base64(image):
|
|||||||
if opts.samples_format.lower() in ("jpg", "jpeg"):
|
if opts.samples_format.lower() in ("jpg", "jpeg"):
|
||||||
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
|
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
|
||||||
else:
|
else:
|
||||||
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
|
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality, lossless=opts.webp_lossless)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise HTTPException(status_code=500, detail="Invalid image format")
|
raise HTTPException(status_code=500, detail="Invalid image format")
|
||||||
|
@ -126,3 +126,4 @@ parser.add_argument("--skip-load-model-at-start", action='store_true', help="if
|
|||||||
parser.add_argument("--unix-filenames-sanitization", action='store_true', help="allow any symbols except '/' in filenames. May conflict with your browser and file system")
|
parser.add_argument("--unix-filenames-sanitization", action='store_true', help="allow any symbols except '/' in filenames. May conflict with your browser and file system")
|
||||||
parser.add_argument("--filenames-max-length", type=int, default=128, help='maximal length of filenames of saved images. If you override it, it can conflict with your file system')
|
parser.add_argument("--filenames-max-length", type=int, default=128, help='maximal length of filenames of saved images. If you override it, it can conflict with your file system')
|
||||||
parser.add_argument("--no-prompt-history", action='store_true', help="disable read prompt from last generation feature; settings this argument will not create '--data_path/params.txt' file")
|
parser.add_argument("--no-prompt-history", action='store_true', help="disable read prompt from last generation feature; settings this argument will not create '--data_path/params.txt' file")
|
||||||
|
parser.add_argument("--uv", action='store_true', help="use the uv package manager")
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
from modules import modelloader, errors
|
from modules import modelloader, errors
|
||||||
from modules.shared import cmd_opts, opts
|
from modules.shared import cmd_opts, opts, hf_endpoint
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.upscaler_utils import upscale_with_model
|
from modules.upscaler_utils import upscale_with_model
|
||||||
|
|
||||||
@ -49,7 +49,18 @@ class UpscalerDAT(Upscaler):
|
|||||||
scaler.local_data_path = modelloader.load_file_from_url(
|
scaler.local_data_path = modelloader.load_file_from_url(
|
||||||
scaler.data_path,
|
scaler.data_path,
|
||||||
model_dir=self.model_download_path,
|
model_dir=self.model_download_path,
|
||||||
|
hash_prefix=scaler.sha256,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if os.path.getsize(scaler.local_data_path) < 200:
|
||||||
|
# Re-download if the file is too small, probably an LFS pointer
|
||||||
|
scaler.local_data_path = modelloader.load_file_from_url(
|
||||||
|
scaler.data_path,
|
||||||
|
model_dir=self.model_download_path,
|
||||||
|
hash_prefix=scaler.sha256,
|
||||||
|
re_download=True,
|
||||||
|
)
|
||||||
|
|
||||||
if not os.path.exists(scaler.local_data_path):
|
if not os.path.exists(scaler.local_data_path):
|
||||||
raise FileNotFoundError(f"DAT data missing: {scaler.local_data_path}")
|
raise FileNotFoundError(f"DAT data missing: {scaler.local_data_path}")
|
||||||
return scaler
|
return scaler
|
||||||
@ -60,20 +71,23 @@ def get_dat_models(scaler):
|
|||||||
return [
|
return [
|
||||||
UpscalerData(
|
UpscalerData(
|
||||||
name="DAT x2",
|
name="DAT x2",
|
||||||
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x2.pth",
|
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x2.pth",
|
||||||
scale=2,
|
scale=2,
|
||||||
upscaler=scaler,
|
upscaler=scaler,
|
||||||
|
sha256='7760aa96e4ee77e29d4f89c3a4486200042e019461fdb8aa286f49aa00b89b51',
|
||||||
),
|
),
|
||||||
UpscalerData(
|
UpscalerData(
|
||||||
name="DAT x3",
|
name="DAT x3",
|
||||||
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x3.pth",
|
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x3.pth",
|
||||||
scale=3,
|
scale=3,
|
||||||
upscaler=scaler,
|
upscaler=scaler,
|
||||||
|
sha256='581973e02c06f90d4eb90acf743ec9604f56f3c2c6f9e1e2c2b38ded1f80d197',
|
||||||
),
|
),
|
||||||
UpscalerData(
|
UpscalerData(
|
||||||
name="DAT x4",
|
name="DAT x4",
|
||||||
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x4.pth",
|
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x4.pth",
|
||||||
scale=4,
|
scale=4,
|
||||||
upscaler=scaler,
|
upscaler=scaler,
|
||||||
|
sha256='391a6ce69899dff5ea3214557e9d585608254579217169faf3d4c353caff049e',
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
@ -23,7 +23,7 @@ def run_pnginfo(image):
|
|||||||
info = ''
|
info = ''
|
||||||
for key, text in items.items():
|
for key, text in items.items():
|
||||||
info += f"""
|
info += f"""
|
||||||
<div>
|
<div class="infotext">
|
||||||
<p><b>{plaintext_to_html(str(key))}</b></p>
|
<p><b>{plaintext_to_html(str(key))}</b></p>
|
||||||
<p>{plaintext_to_html(str(text))}</p>
|
<p>{plaintext_to_html(str(text))}</p>
|
||||||
</div>
|
</div>
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
import hashlib
|
import hashlib
|
||||||
import os.path
|
import os.path
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared, errors
|
||||||
import modules.cache
|
import modules.cache
|
||||||
|
|
||||||
dump_cache = modules.cache.dump_cache
|
dump_cache = modules.cache.dump_cache
|
||||||
@ -32,7 +32,7 @@ def sha256_from_cache(filename, title, use_addnet_hash=False):
|
|||||||
cached_sha256 = hashes[title].get("sha256", None)
|
cached_sha256 = hashes[title].get("sha256", None)
|
||||||
cached_mtime = hashes[title].get("mtime", 0)
|
cached_mtime = hashes[title].get("mtime", 0)
|
||||||
|
|
||||||
if ondisk_mtime > cached_mtime or cached_sha256 is None:
|
if ondisk_mtime != cached_mtime or cached_sha256 is None:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return cached_sha256
|
return cached_sha256
|
||||||
@ -82,3 +82,31 @@ def addnet_hash_safetensors(b):
|
|||||||
|
|
||||||
return hash_sha256.hexdigest()
|
return hash_sha256.hexdigest()
|
||||||
|
|
||||||
|
|
||||||
|
def partial_hash_from_cache(filename, *, ignore_cache: bool = False, digits: int = 8):
|
||||||
|
"""old hash that only looks at a small part of the file and is prone to collisions
|
||||||
|
kept for compatibility, don't use this for new things
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
filename = str(filename)
|
||||||
|
mtime = os.path.getmtime(filename)
|
||||||
|
hashes = cache('partial-hash')
|
||||||
|
cache_entry = hashes.get(filename, {})
|
||||||
|
cache_mtime = cache_entry.get("mtime", 0)
|
||||||
|
cache_hash = cache_entry.get("hash", None)
|
||||||
|
if mtime == cache_mtime and cache_hash and not ignore_cache:
|
||||||
|
return cache_hash[0:digits]
|
||||||
|
|
||||||
|
with open(filename, 'rb') as file:
|
||||||
|
m = hashlib.sha256()
|
||||||
|
file.seek(0x100000)
|
||||||
|
m.update(file.read(0x10000))
|
||||||
|
partial_hash = m.hexdigest()
|
||||||
|
hashes[filename] = {'mtime': mtime, 'hash': partial_hash}
|
||||||
|
return partial_hash[0:digits]
|
||||||
|
|
||||||
|
except FileNotFoundError:
|
||||||
|
pass
|
||||||
|
except Exception:
|
||||||
|
errors.report(f'Error calculating partial hash for {filename}', exc_info=True)
|
||||||
|
return 'NOFILE'
|
||||||
|
@ -409,6 +409,7 @@ class FilenameGenerator:
|
|||||||
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if (self.p.n_iter == 1 and self.p.batch_size == 1) or self.zip else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
|
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if (self.p.n_iter == 1 and self.p.batch_size == 1) or self.zip else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
|
||||||
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
|
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
|
||||||
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
|
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
|
||||||
|
'randn_source': lambda self: opts.data["randn_source"],
|
||||||
'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
|
'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
|
||||||
'user': lambda self: self.p.user,
|
'user': lambda self: self.p.user,
|
||||||
'vae_filename': lambda self: self.get_vae_filename(),
|
'vae_filename': lambda self: self.get_vae_filename(),
|
||||||
|
@ -43,9 +43,7 @@ def check_python_version():
|
|||||||
supported_minors = [7, 8, 9, 10, 11]
|
supported_minors = [7, 8, 9, 10, 11]
|
||||||
|
|
||||||
if not (major == 3 and minor in supported_minors):
|
if not (major == 3 and minor in supported_minors):
|
||||||
import modules.errors
|
errors.print_error_explanation(f"""
|
||||||
|
|
||||||
modules.errors.print_error_explanation(f"""
|
|
||||||
INCOMPATIBLE PYTHON VERSION
|
INCOMPATIBLE PYTHON VERSION
|
||||||
|
|
||||||
This program is tested with 3.10.6 Python, but you have {major}.{minor}.{micro}.
|
This program is tested with 3.10.6 Python, but you have {major}.{minor}.{micro}.
|
||||||
@ -315,9 +313,43 @@ def requirements_met(requirements_file):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def get_cuda_comp_cap():
|
||||||
|
"""
|
||||||
|
Returns float of CUDA Compute Capability using nvidia-smi
|
||||||
|
Returns 0.0 on error
|
||||||
|
CUDA Compute Capability
|
||||||
|
ref https://developer.nvidia.com/cuda-gpus
|
||||||
|
ref https://en.wikipedia.org/wiki/CUDA
|
||||||
|
Blackwell consumer GPUs should return 12.0 data-center GPUs should return 10.0
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
return max(map(float, subprocess.check_output(['nvidia-smi', '--query-gpu=compute_cap', '--format=noheader,csv'], text=True).splitlines()))
|
||||||
|
except Exception as _:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
|
||||||
|
def early_access_blackwell_wheels():
|
||||||
|
"""For Blackwell GPUs, use Early Access PyTorch Wheels provided by Nvidia"""
|
||||||
|
print('deprecated early_access_blackwell_wheels')
|
||||||
|
if all([
|
||||||
|
os.environ.get('TORCH_INDEX_URL') is None,
|
||||||
|
sys.version_info.major == 3,
|
||||||
|
sys.version_info.minor in (10, 11, 12),
|
||||||
|
platform.system() == "Windows",
|
||||||
|
get_cuda_comp_cap() >= 10, # Blackwell
|
||||||
|
]):
|
||||||
|
base_repo = 'https://huggingface.co/w-e-w/torch-2.6.0-cu128.nv/resolve/main/'
|
||||||
|
ea_whl = {
|
||||||
|
10: f'{base_repo}torch-2.6.0+cu128.nv-cp310-cp310-win_amd64.whl#sha256=fef3de7ce8f4642e405576008f384304ad0e44f7b06cc1aa45e0ab4b6e70490d {base_repo}torchvision-0.20.0a0+cu128.nv-cp310-cp310-win_amd64.whl#sha256=50841254f59f1db750e7348b90a8f4cd6befec217ab53cbb03780490b225abef',
|
||||||
|
11: f'{base_repo}torch-2.6.0+cu128.nv-cp311-cp311-win_amd64.whl#sha256=6665c36e6a7e79e7a2cb42bec190d376be9ca2859732ed29dd5b7b5a612d0d26 {base_repo}torchvision-0.20.0a0+cu128.nv-cp311-cp311-win_amd64.whl#sha256=bbc0ee4938e35fe5a30de3613bfcd2d8ef4eae334cf8d49db860668f0bb47083',
|
||||||
|
12: f'{base_repo}torch-2.6.0+cu128.nv-cp312-cp312-win_amd64.whl#sha256=a3197f72379d34b08c4a4bcf49ea262544a484e8702b8c46cbcd66356c89def6 {base_repo}torchvision-0.20.0a0+cu128.nv-cp312-cp312-win_amd64.whl#sha256=235e7be71ac4e75b0f8e817bae4796d7bac8a67146d2037ab96394f2bdc63e6c'
|
||||||
|
}
|
||||||
|
return f'pip install {ea_whl.get(sys.version_info.minor)}'
|
||||||
|
|
||||||
|
|
||||||
def prepare_environment():
|
def prepare_environment():
|
||||||
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu121")
|
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu128")
|
||||||
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.1.2 torchvision==0.16.2 --extra-index-url {torch_index_url}")
|
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.7.0 torchvision==0.22.0 --extra-index-url {torch_index_url}")
|
||||||
if args.use_ipex:
|
if args.use_ipex:
|
||||||
if platform.system() == "Windows":
|
if platform.system() == "Windows":
|
||||||
# The "Nuullll/intel-extension-for-pytorch" wheels were built from IPEX source for Intel Arc GPU: https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main
|
# The "Nuullll/intel-extension-for-pytorch" wheels were built from IPEX source for Intel Arc GPU: https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main
|
||||||
@ -341,7 +373,7 @@ def prepare_environment():
|
|||||||
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
||||||
requirements_file_for_npu = os.environ.get('REQS_FILE_FOR_NPU', "requirements_npu.txt")
|
requirements_file_for_npu = os.environ.get('REQS_FILE_FOR_NPU', "requirements_npu.txt")
|
||||||
|
|
||||||
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.23.post1')
|
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.30')
|
||||||
clip_package = os.environ.get('CLIP_PACKAGE', "https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip")
|
clip_package = os.environ.get('CLIP_PACKAGE', "https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip")
|
||||||
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
|
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
|
||||||
|
|
||||||
|
@ -10,6 +10,7 @@ import torch
|
|||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
|
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
|
||||||
|
from modules.util import load_file_from_url # noqa, backwards compatibility
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
import spandrel
|
import spandrel
|
||||||
@ -17,30 +18,6 @@ if TYPE_CHECKING:
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def load_file_from_url(
|
|
||||||
url: str,
|
|
||||||
*,
|
|
||||||
model_dir: str,
|
|
||||||
progress: bool = True,
|
|
||||||
file_name: str | None = None,
|
|
||||||
hash_prefix: str | None = None,
|
|
||||||
) -> str:
|
|
||||||
"""Download a file from `url` into `model_dir`, using the file present if possible.
|
|
||||||
|
|
||||||
Returns the path to the downloaded file.
|
|
||||||
"""
|
|
||||||
os.makedirs(model_dir, exist_ok=True)
|
|
||||||
if not file_name:
|
|
||||||
parts = urlparse(url)
|
|
||||||
file_name = os.path.basename(parts.path)
|
|
||||||
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
|
|
||||||
if not os.path.exists(cached_file):
|
|
||||||
print(f'Downloading: "{url}" to {cached_file}\n')
|
|
||||||
from torch.hub import download_url_to_file
|
|
||||||
download_url_to_file(url, cached_file, progress=progress, hash_prefix=hash_prefix)
|
|
||||||
return cached_file
|
|
||||||
|
|
||||||
|
|
||||||
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None, hash_prefix=None) -> list:
|
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None, hash_prefix=None) -> list:
|
||||||
"""
|
"""
|
||||||
A one-and done loader to try finding the desired models in specified directories.
|
A one-and done loader to try finding the desired models in specified directories.
|
||||||
|
@ -24,7 +24,7 @@ class SafetensorsMapping(typing.Mapping):
|
|||||||
return self.file.get_tensor(key)
|
return self.file.get_tensor(key)
|
||||||
|
|
||||||
|
|
||||||
CLIPL_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors"
|
CLIPL_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors"
|
||||||
CLIPL_CONFIG = {
|
CLIPL_CONFIG = {
|
||||||
"hidden_act": "quick_gelu",
|
"hidden_act": "quick_gelu",
|
||||||
"hidden_size": 768,
|
"hidden_size": 768,
|
||||||
@ -33,7 +33,7 @@ CLIPL_CONFIG = {
|
|||||||
"num_hidden_layers": 12,
|
"num_hidden_layers": 12,
|
||||||
}
|
}
|
||||||
|
|
||||||
CLIPG_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors"
|
CLIPG_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors"
|
||||||
CLIPG_CONFIG = {
|
CLIPG_CONFIG = {
|
||||||
"hidden_act": "gelu",
|
"hidden_act": "gelu",
|
||||||
"hidden_size": 1280,
|
"hidden_size": 1280,
|
||||||
@ -43,7 +43,7 @@ CLIPG_CONFIG = {
|
|||||||
"textual_inversion_key": "clip_g",
|
"textual_inversion_key": "clip_g",
|
||||||
}
|
}
|
||||||
|
|
||||||
T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
|
T5_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
|
||||||
T5_CONFIG = {
|
T5_CONFIG = {
|
||||||
"d_ff": 10240,
|
"d_ff": 10240,
|
||||||
"d_model": 4096,
|
"d_model": 4096,
|
||||||
|
@ -1259,7 +1259,10 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
if self.hr_checkpoint_info is None:
|
if self.hr_checkpoint_info is None:
|
||||||
raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')
|
raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')
|
||||||
|
|
||||||
self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
|
if shared.sd_model.sd_checkpoint_info == self.hr_checkpoint_info:
|
||||||
|
self.hr_checkpoint_info = None
|
||||||
|
else:
|
||||||
|
self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
|
||||||
|
|
||||||
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
|
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
|
||||||
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
|
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
|
||||||
|
@ -13,6 +13,7 @@ class ScriptPostprocessingForMainUI(scripts.Script):
|
|||||||
return scripts.AlwaysVisible
|
return scripts.AlwaysVisible
|
||||||
|
|
||||||
def ui(self, is_img2img):
|
def ui(self, is_img2img):
|
||||||
|
self.script.tab_name = '_img2img' if is_img2img else '_txt2img'
|
||||||
self.postprocessing_controls = self.script.ui()
|
self.postprocessing_controls = self.script.ui()
|
||||||
return self.postprocessing_controls.values()
|
return self.postprocessing_controls.values()
|
||||||
|
|
||||||
@ -33,7 +34,7 @@ def create_auto_preprocessing_script_data():
|
|||||||
|
|
||||||
for name in shared.opts.postprocessing_enable_in_main_ui:
|
for name in shared.opts.postprocessing_enable_in_main_ui:
|
||||||
script = next(iter([x for x in scripts.postprocessing_scripts_data if x.script_class.name == name]), None)
|
script = next(iter([x for x in scripts.postprocessing_scripts_data if x.script_class.name == name]), None)
|
||||||
if script is None:
|
if script is None or script.script_class.extra_only:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
constructor = lambda s=script: ScriptPostprocessingForMainUI(s.script_class())
|
constructor = lambda s=script: ScriptPostprocessingForMainUI(s.script_class())
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import re
|
||||||
import dataclasses
|
import dataclasses
|
||||||
import os
|
import os
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
@ -59,6 +60,10 @@ class ScriptPostprocessing:
|
|||||||
args_from = None
|
args_from = None
|
||||||
args_to = None
|
args_to = None
|
||||||
|
|
||||||
|
# define if the script should be used only in extras or main UI
|
||||||
|
extra_only = None
|
||||||
|
main_ui_only = None
|
||||||
|
|
||||||
order = 1000
|
order = 1000
|
||||||
"""scripts will be ordred by this value in postprocessing UI"""
|
"""scripts will be ordred by this value in postprocessing UI"""
|
||||||
|
|
||||||
@ -97,6 +102,31 @@ class ScriptPostprocessing:
|
|||||||
def image_changed(self):
|
def image_changed(self):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
tab_name = '' # used by ScriptPostprocessingForMainUI
|
||||||
|
replace_pattern = re.compile(r'\s')
|
||||||
|
rm_pattern = re.compile(r'[^a-z_0-9]')
|
||||||
|
|
||||||
|
def elem_id(self, item_id):
|
||||||
|
"""
|
||||||
|
Helper function to generate id for a HTML element
|
||||||
|
constructs final id out of script name and user-supplied item_id
|
||||||
|
'script_extras_{self.name.lower()}_{item_id}'
|
||||||
|
{tab_name} will append to the end of the id if set
|
||||||
|
tab_name will be set to '_img2img' or '_txt2img' if use by ScriptPostprocessingForMainUI
|
||||||
|
|
||||||
|
Extensions should use this function to generate element IDs
|
||||||
|
"""
|
||||||
|
return self.elem_id_suffix(f'extras_{self.name.lower()}_{item_id}')
|
||||||
|
|
||||||
|
def elem_id_suffix(self, base_id):
|
||||||
|
"""
|
||||||
|
Append tab_name to the base_id
|
||||||
|
|
||||||
|
Extensions that already have specific there element IDs and wish to keep their IDs the same when possible should use this function
|
||||||
|
"""
|
||||||
|
base_id = self.rm_pattern.sub('', self.replace_pattern.sub('_', base_id))
|
||||||
|
return f'{base_id}{self.tab_name}'
|
||||||
|
|
||||||
|
|
||||||
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
||||||
try:
|
try:
|
||||||
@ -119,10 +149,6 @@ class ScriptPostprocessingRunner:
|
|||||||
for script_data in scripts_data:
|
for script_data in scripts_data:
|
||||||
script: ScriptPostprocessing = script_data.script_class()
|
script: ScriptPostprocessing = script_data.script_class()
|
||||||
script.filename = script_data.path
|
script.filename = script_data.path
|
||||||
|
|
||||||
if script.name == "Simple Upscale":
|
|
||||||
continue
|
|
||||||
|
|
||||||
self.scripts.append(script)
|
self.scripts.append(script)
|
||||||
|
|
||||||
def create_script_ui(self, script, inputs):
|
def create_script_ui(self, script, inputs):
|
||||||
@ -152,7 +178,7 @@ class ScriptPostprocessingRunner:
|
|||||||
|
|
||||||
return len(self.scripts)
|
return len(self.scripts)
|
||||||
|
|
||||||
filtered_scripts = [script for script in self.scripts if script.name not in scripts_filter_out]
|
filtered_scripts = [script for script in self.scripts if script.name not in scripts_filter_out and not script.main_ui_only]
|
||||||
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(filtered_scripts)}
|
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(filtered_scripts)}
|
||||||
|
|
||||||
return sorted(filtered_scripts, key=lambda x: script_scores[x.name])
|
return sorted(filtered_scripts, key=lambda x: script_scores[x.name])
|
||||||
|
@ -76,7 +76,7 @@ class DisableInitialization(ReplaceHelper):
|
|||||||
def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
|
def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
|
||||||
|
|
||||||
# this file is always 404, prevent making request
|
# this file is always 404, prevent making request
|
||||||
if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
|
if url == f'{shared.hf_endpoint}/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
|
||||||
return None
|
return None
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -13,6 +13,7 @@ from urllib import request
|
|||||||
import ldm.modules.midas as midas
|
import ldm.modules.midas as midas
|
||||||
|
|
||||||
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack, patches
|
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack, patches
|
||||||
|
from modules.hashes import partial_hash_from_cache as model_hash # noqa: F401 for backwards compatibility
|
||||||
from modules.timer import Timer
|
from modules.timer import Timer
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
import tomesd
|
import tomesd
|
||||||
@ -87,7 +88,7 @@ class CheckpointInfo:
|
|||||||
self.name = name
|
self.name = name
|
||||||
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
|
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
|
||||||
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
|
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
|
||||||
self.hash = model_hash(filename)
|
self.hash = hashes.partial_hash_from_cache(filename)
|
||||||
|
|
||||||
self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
|
self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
|
||||||
self.shorthash = self.sha256[0:10] if self.sha256 else None
|
self.shorthash = self.sha256[0:10] if self.sha256 else None
|
||||||
@ -159,7 +160,7 @@ def list_models():
|
|||||||
model_url = None
|
model_url = None
|
||||||
expected_sha256 = None
|
expected_sha256 = None
|
||||||
else:
|
else:
|
||||||
model_url = f"{shared.hf_endpoint}/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
|
model_url = f"{shared.hf_endpoint}/stable-diffusion-v1-5/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
|
||||||
expected_sha256 = '6ce0161689b3853acaa03779ec93eafe75a02f4ced659bee03f50797806fa2fa'
|
expected_sha256 = '6ce0161689b3853acaa03779ec93eafe75a02f4ced659bee03f50797806fa2fa'
|
||||||
|
|
||||||
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"], hash_prefix=expected_sha256)
|
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"], hash_prefix=expected_sha256)
|
||||||
@ -200,21 +201,6 @@ def get_closet_checkpoint_match(search_string):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def model_hash(filename):
|
|
||||||
"""old hash that only looks at a small part of the file and is prone to collisions"""
|
|
||||||
|
|
||||||
try:
|
|
||||||
with open(filename, "rb") as file:
|
|
||||||
import hashlib
|
|
||||||
m = hashlib.sha256()
|
|
||||||
|
|
||||||
file.seek(0x100000)
|
|
||||||
m.update(file.read(0x10000))
|
|
||||||
return m.hexdigest()[0:8]
|
|
||||||
except FileNotFoundError:
|
|
||||||
return 'NOFILE'
|
|
||||||
|
|
||||||
|
|
||||||
def select_checkpoint():
|
def select_checkpoint():
|
||||||
"""Raises `FileNotFoundError` if no checkpoints are found."""
|
"""Raises `FileNotFoundError` if no checkpoints are found."""
|
||||||
model_checkpoint = shared.opts.sd_model_checkpoint
|
model_checkpoint = shared.opts.sd_model_checkpoint
|
||||||
@ -423,6 +409,10 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
|||||||
|
|
||||||
set_model_type(model, state_dict)
|
set_model_type(model, state_dict)
|
||||||
set_model_fields(model)
|
set_model_fields(model)
|
||||||
|
if 'ztsnr' in state_dict:
|
||||||
|
model.ztsnr = True
|
||||||
|
else:
|
||||||
|
model.ztsnr = False
|
||||||
|
|
||||||
if model.is_sdxl:
|
if model.is_sdxl:
|
||||||
sd_models_xl.extend_sdxl(model)
|
sd_models_xl.extend_sdxl(model)
|
||||||
@ -661,7 +651,7 @@ def apply_alpha_schedule_override(sd_model, p=None):
|
|||||||
p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
|
p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
|
||||||
sd_model.alphas_cumprod = sd_model.alphas_cumprod.half().to(shared.device)
|
sd_model.alphas_cumprod = sd_model.alphas_cumprod.half().to(shared.device)
|
||||||
|
|
||||||
if opts.sd_noise_schedule == "Zero Terminal SNR":
|
if opts.sd_noise_schedule == "Zero Terminal SNR" or (hasattr(sd_model, 'ztsnr') and sd_model.ztsnr):
|
||||||
if p is not None:
|
if p is not None:
|
||||||
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
|
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
|
||||||
sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(sd_model.alphas_cumprod).to(shared.device)
|
sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(sd_model.alphas_cumprod).to(shared.device)
|
||||||
@ -783,7 +773,7 @@ def get_obj_from_str(string, reload=False):
|
|||||||
return getattr(importlib.import_module(module, package=None), cls)
|
return getattr(importlib.import_module(module, package=None), cls)
|
||||||
|
|
||||||
|
|
||||||
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
|
def load_model(checkpoint_info=None, already_loaded_state_dict=None, checkpoint_config=None):
|
||||||
from modules import sd_hijack
|
from modules import sd_hijack
|
||||||
checkpoint_info = checkpoint_info or select_checkpoint()
|
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||||
|
|
||||||
@ -801,7 +791,8 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
|
|||||||
else:
|
else:
|
||||||
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
|
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
|
||||||
|
|
||||||
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
|
if not checkpoint_config:
|
||||||
|
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
|
||||||
clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict)
|
clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict)
|
||||||
|
|
||||||
timer.record("find config")
|
timer.record("find config")
|
||||||
@ -974,7 +965,7 @@ def reload_model_weights(sd_model=None, info=None, forced_reload=False):
|
|||||||
if sd_model is not None:
|
if sd_model is not None:
|
||||||
send_model_to_trash(sd_model)
|
send_model_to_trash(sd_model)
|
||||||
|
|
||||||
load_model(checkpoint_info, already_loaded_state_dict=state_dict)
|
load_model(checkpoint_info, already_loaded_state_dict=state_dict, checkpoint_config=checkpoint_config)
|
||||||
return model_data.sd_model
|
return model_data.sd_model
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -14,6 +14,7 @@ config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
|
|||||||
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
|
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
|
||||||
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
|
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
|
||||||
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
|
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
|
||||||
|
config_sdxlv = os.path.join(sd_configs_path, "sd_xl_v.yaml")
|
||||||
config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
|
config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
|
||||||
config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
|
config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
|
||||||
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
|
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
|
||||||
@ -81,6 +82,9 @@ def guess_model_config_from_state_dict(sd, filename):
|
|||||||
if diffusion_model_input.shape[1] == 9:
|
if diffusion_model_input.shape[1] == 9:
|
||||||
return config_sdxl_inpainting
|
return config_sdxl_inpainting
|
||||||
else:
|
else:
|
||||||
|
if ('v_pred' in sd):
|
||||||
|
del sd['v_pred']
|
||||||
|
return config_sdxlv
|
||||||
return config_sdxl
|
return config_sdxl
|
||||||
|
|
||||||
if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
|
if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
|
||||||
|
@ -117,12 +117,15 @@ def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
|
|||||||
|
|
||||||
|
|
||||||
def beta_scheduler(n, sigma_min, sigma_max, inner_model, device):
|
def beta_scheduler(n, sigma_min, sigma_max, inner_model, device):
|
||||||
# From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024) """
|
# From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)
|
||||||
alpha = shared.opts.beta_dist_alpha
|
alpha = shared.opts.beta_dist_alpha
|
||||||
beta = shared.opts.beta_dist_beta
|
beta = shared.opts.beta_dist_beta
|
||||||
timesteps = 1 - np.linspace(0, 1, n)
|
curve = [stats.beta.ppf(x, alpha, beta) for x in np.linspace(1, 0, n)]
|
||||||
timesteps = [stats.beta.ppf(x, alpha, beta) for x in timesteps]
|
|
||||||
sigmas = [sigma_min + (x * (sigma_max-sigma_min)) for x in timesteps]
|
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
|
||||||
|
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
|
||||||
|
timesteps = [end + x * (start - end) for x in curve]
|
||||||
|
sigmas = [inner_model.t_to_sigma(ts) for ts in timesteps]
|
||||||
sigmas += [0.0]
|
sigmas += [0.0]
|
||||||
return torch.FloatTensor(sigmas).to(device)
|
return torch.FloatTensor(sigmas).to(device)
|
||||||
|
|
||||||
|
@ -16,10 +16,12 @@ def dat_models_names():
|
|||||||
return [x.name for x in modules.dat_model.get_dat_models(None)]
|
return [x.name for x in modules.dat_model.get_dat_models(None)]
|
||||||
|
|
||||||
|
|
||||||
def postprocessing_scripts():
|
def postprocessing_scripts(filter_out_extra_only=False, filter_out_main_ui_only=False):
|
||||||
import modules.scripts
|
import modules.scripts
|
||||||
|
return list(filter(
|
||||||
return modules.scripts.scripts_postproc.scripts
|
lambda s: (not filter_out_extra_only or not s.extra_only) and (not filter_out_main_ui_only or not s.main_ui_only),
|
||||||
|
modules.scripts.scripts_postproc.scripts,
|
||||||
|
))
|
||||||
|
|
||||||
|
|
||||||
def sd_vae_items():
|
def sd_vae_items():
|
||||||
@ -123,7 +125,7 @@ def ui_reorder_categories():
|
|||||||
|
|
||||||
def callbacks_order_settings():
|
def callbacks_order_settings():
|
||||||
options = {
|
options = {
|
||||||
"sd_vae_explanation": OptionHTML("""
|
"callbacks_order_explanation": OptionHTML("""
|
||||||
For categories below, callbacks added to dropdowns happen before others, in order listed.
|
For categories below, callbacks added to dropdowns happen before others, in order listed.
|
||||||
"""),
|
"""),
|
||||||
|
|
||||||
|
@ -33,12 +33,12 @@ categories.register_category("training", "Training")
|
|||||||
|
|
||||||
options_templates.update(options_section(('saving-images', "Saving images/grids", "saving"), {
|
options_templates.update(options_section(('saving-images', "Saving images/grids", "saving"), {
|
||||||
"samples_save": OptionInfo(True, "Always save all generated images"),
|
"samples_save": OptionInfo(True, "Always save all generated images"),
|
||||||
"samples_format": OptionInfo('png', 'File format for images'),
|
"samples_format": OptionInfo('png', 'File format for images', ui_components.DropdownEditable, {"choices": ("png", "jpg", "jpeg", "webp", "avif")}).info("manual input of <a href='https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html' target='_blank'>other formats</a> is possible, but compatibility is not guaranteed"),
|
||||||
"samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
|
"samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
|
||||||
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
|
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
|
||||||
"save_images_replace_action": OptionInfo("Replace", "Saving the image to an existing file", gr.Radio, {"choices": ["Replace", "Add number suffix"], **hide_dirs}),
|
"save_images_replace_action": OptionInfo("Replace", "Saving the image to an existing file", gr.Radio, {"choices": ["Replace", "Add number suffix"], **hide_dirs}),
|
||||||
"grid_save": OptionInfo(True, "Always save all generated image grids"),
|
"grid_save": OptionInfo(True, "Always save all generated image grids"),
|
||||||
"grid_format": OptionInfo('png', 'File format for grids'),
|
"grid_format": OptionInfo('png', 'File format for grids', ui_components.DropdownEditable, {"choices": ("png", "jpg", "jpeg", "webp", "avif")}).info("manual input of <a href='https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html' target='_blank'>other formats</a> is possible, but compatibility is not guaranteed"),
|
||||||
"grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
|
"grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
|
||||||
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
|
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
|
||||||
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
|
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
|
||||||
@ -128,6 +128,7 @@ options_templates.update(options_section(('system', "System", "system"), {
|
|||||||
"disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
|
"disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
|
||||||
"hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
|
"hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
|
||||||
"dump_stacks_on_signal": OptionInfo(False, "Print stack traces before exiting the program with ctrl+c."),
|
"dump_stacks_on_signal": OptionInfo(False, "Print stack traces before exiting the program with ctrl+c."),
|
||||||
|
"concurrent_git_fetch_limit": OptionInfo(16, "Number of simultaneous extension update checks ", gr.Slider, {"step": 1, "minimum": 1, "maximum": 100}).info("reduce extension update check time"),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('profiler', "Profiler", "system"), {
|
options_templates.update(options_section(('profiler', "Profiler", "system"), {
|
||||||
@ -231,7 +232,7 @@ options_templates.update(options_section(('img2img', "img2img", "sd"), {
|
|||||||
|
|
||||||
options_templates.update(options_section(('optimizations', "Optimizations", "sd"), {
|
options_templates.update(options_section(('optimizations', "Optimizations", "sd"), {
|
||||||
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
|
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
|
||||||
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}, infotext='NGMS').link("PR", "https://github.com/AUTOMATIC1111/stablediffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
|
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}, infotext='NGMS').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
|
||||||
"s_min_uncond_all": OptionInfo(False, "Negative Guidance minimum sigma all steps", infotext='NGMS all steps').info("By default, NGMS above skips every other step; this makes it skip all steps"),
|
"s_min_uncond_all": OptionInfo(False, "Negative Guidance minimum sigma all steps", infotext='NGMS all steps').info("By default, NGMS above skips every other step; this makes it skip all steps"),
|
||||||
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
|
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
|
||||||
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
|
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
|
||||||
@ -291,6 +292,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks", "s
|
|||||||
"textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
|
"textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
|
||||||
"textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
|
"textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
|
||||||
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *shared.hypernetworks]}, refresh=shared_items.reload_hypernetworks),
|
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *shared.hypernetworks]}, refresh=shared_items.reload_hypernetworks),
|
||||||
|
"textual_inversion_image_embedding_data_cache": OptionInfo(False, 'Cache the data of image embeddings').info('potentially increase TI load time at the cost some disk space'),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('ui_prompt_editing', "Prompt editing", "ui"), {
|
options_templates.update(options_section(('ui_prompt_editing', "Prompt editing", "ui"), {
|
||||||
@ -404,15 +406,15 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
|
|||||||
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
|
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
|
||||||
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
|
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
|
||||||
'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models"),
|
'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models"),
|
||||||
'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling"),
|
'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling; XYZ plot: Skip Early CFG"),
|
||||||
'beta_dist_alpha': OptionInfo(0.6, "Beta scheduler - alpha", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler alpha').info('Default = 0.6; the alpha parameter of the beta distribution used in Beta sampling'),
|
'beta_dist_alpha': OptionInfo(0.6, "Beta scheduler - alpha", gr.Slider, {"minimum": 0.01, "maximum": 5.0, "step": 0.01}, infotext='Beta scheduler alpha').info('Default = 0.6; the alpha parameter of the beta distribution used in Beta sampling'),
|
||||||
'beta_dist_beta': OptionInfo(0.6, "Beta scheduler - beta", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler beta').info('Default = 0.6; the beta parameter of the beta distribution used in Beta sampling'),
|
'beta_dist_beta': OptionInfo(0.6, "Beta scheduler - beta", gr.Slider, {"minimum": 0.01, "maximum": 5.0, "step": 0.01}, infotext='Beta scheduler beta').info('Default = 0.6; the beta parameter of the beta distribution used in Beta sampling'),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {
|
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {
|
||||||
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts(filter_out_extra_only=True)]}),
|
||||||
'postprocessing_disable_in_extras': OptionInfo([], "Disable postprocessing operations in extras tab", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
'postprocessing_disable_in_extras': OptionInfo([], "Disable postprocessing operations in extras tab", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts(filter_out_main_ui_only=True)]}),
|
||||||
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts(filter_out_main_ui_only=True)]}),
|
||||||
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||||
'postprocessing_existing_caption_action': OptionInfo("Ignore", "Action for existing captions", gr.Radio, {"choices": ["Ignore", "Keep", "Prepend", "Append"]}).info("when generating captions using postprocessing; Ignore = use generated; Keep = use original; Prepend/Append = combine both"),
|
'postprocessing_existing_caption_action': OptionInfo("Ignore", "Action for existing captions", gr.Radio, {"choices": ["Ignore", "Keep", "Prepend", "Append"]}).info("when generating captions using postprocessing; Ignore = use generated; Keep = use original; Prepend/Append = combine both"),
|
||||||
}))
|
}))
|
||||||
|
@ -12,7 +12,7 @@ import safetensors.torch
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image, PngImagePlugin
|
from PIL import Image, PngImagePlugin
|
||||||
|
|
||||||
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
|
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes, cache
|
||||||
import modules.textual_inversion.dataset
|
import modules.textual_inversion.dataset
|
||||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||||
|
|
||||||
@ -116,6 +116,7 @@ class EmbeddingDatabase:
|
|||||||
self.expected_shape = -1
|
self.expected_shape = -1
|
||||||
self.embedding_dirs = {}
|
self.embedding_dirs = {}
|
||||||
self.previously_displayed_embeddings = ()
|
self.previously_displayed_embeddings = ()
|
||||||
|
self.image_embedding_cache = cache.cache('image-embedding')
|
||||||
|
|
||||||
def add_embedding_dir(self, path):
|
def add_embedding_dir(self, path):
|
||||||
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
|
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
|
||||||
@ -154,6 +155,31 @@ class EmbeddingDatabase:
|
|||||||
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
||||||
return vec.shape[1]
|
return vec.shape[1]
|
||||||
|
|
||||||
|
def read_embedding_from_image(self, path, name):
|
||||||
|
try:
|
||||||
|
ondisk_mtime = os.path.getmtime(path)
|
||||||
|
|
||||||
|
if (cache_embedding := self.image_embedding_cache.get(path)) and ondisk_mtime == cache_embedding.get('mtime', 0):
|
||||||
|
# cache will only be used if the file has not been modified time matches
|
||||||
|
return cache_embedding.get('data', None), cache_embedding.get('name', None)
|
||||||
|
|
||||||
|
embed_image = Image.open(path)
|
||||||
|
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
|
||||||
|
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
||||||
|
name = data.get('name', name)
|
||||||
|
elif data := extract_image_data_embed(embed_image):
|
||||||
|
name = data.get('name', name)
|
||||||
|
|
||||||
|
if data is None or shared.opts.textual_inversion_image_embedding_data_cache:
|
||||||
|
# data of image embeddings only will be cached if the option textual_inversion_image_embedding_data_cache is enabled
|
||||||
|
# results of images that are not embeddings will allways be cached to reduce unnecessary future disk reads
|
||||||
|
self.image_embedding_cache[path] = {'data': data, 'name': None if data is None else name, 'mtime': ondisk_mtime}
|
||||||
|
|
||||||
|
return data, name
|
||||||
|
except Exception:
|
||||||
|
errors.report(f"Error loading embedding {path}", exc_info=True)
|
||||||
|
return None, None
|
||||||
|
|
||||||
def load_from_file(self, path, filename):
|
def load_from_file(self, path, filename):
|
||||||
name, ext = os.path.splitext(filename)
|
name, ext = os.path.splitext(filename)
|
||||||
ext = ext.upper()
|
ext = ext.upper()
|
||||||
@ -163,17 +189,10 @@ class EmbeddingDatabase:
|
|||||||
if second_ext.upper() == '.PREVIEW':
|
if second_ext.upper() == '.PREVIEW':
|
||||||
return
|
return
|
||||||
|
|
||||||
embed_image = Image.open(path)
|
data, name = self.read_embedding_from_image(path, name)
|
||||||
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
|
if data is None:
|
||||||
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
return
|
||||||
name = data.get('name', name)
|
|
||||||
else:
|
|
||||||
data = extract_image_data_embed(embed_image)
|
|
||||||
if data:
|
|
||||||
name = data.get('name', name)
|
|
||||||
else:
|
|
||||||
# if data is None, means this is not an embedding, just a preview image
|
|
||||||
return
|
|
||||||
elif ext in ['.BIN', '.PT']:
|
elif ext in ['.BIN', '.PT']:
|
||||||
data = torch.load(path, map_location="cpu")
|
data = torch.load(path, map_location="cpu")
|
||||||
elif ext in ['.SAFETENSORS']:
|
elif ext in ['.SAFETENSORS']:
|
||||||
@ -191,7 +210,6 @@ class EmbeddingDatabase:
|
|||||||
else:
|
else:
|
||||||
print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.")
|
print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.")
|
||||||
|
|
||||||
|
|
||||||
def load_from_dir(self, embdir):
|
def load_from_dir(self, embdir):
|
||||||
if not os.path.isdir(embdir.path):
|
if not os.path.isdir(embdir.path):
|
||||||
return
|
return
|
||||||
|
@ -44,6 +44,9 @@ mimetypes.add_type('application/javascript', '.mjs')
|
|||||||
mimetypes.add_type('image/webp', '.webp')
|
mimetypes.add_type('image/webp', '.webp')
|
||||||
mimetypes.add_type('image/avif', '.avif')
|
mimetypes.add_type('image/avif', '.avif')
|
||||||
|
|
||||||
|
# override potentially incorrect mimetypes
|
||||||
|
mimetypes.add_type('text/css', '.css')
|
||||||
|
|
||||||
if not cmd_opts.share and not cmd_opts.listen:
|
if not cmd_opts.share and not cmd_opts.listen:
|
||||||
# fix gradio phoning home
|
# fix gradio phoning home
|
||||||
gradio.utils.version_check = lambda: None
|
gradio.utils.version_check = lambda: None
|
||||||
|
@ -91,6 +91,7 @@ class InputAccordion(gr.Checkbox):
|
|||||||
Actually just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox.
|
Actually just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
accordion_id_set = set()
|
||||||
global_index = 0
|
global_index = 0
|
||||||
|
|
||||||
def __init__(self, value, **kwargs):
|
def __init__(self, value, **kwargs):
|
||||||
@ -99,6 +100,18 @@ class InputAccordion(gr.Checkbox):
|
|||||||
self.accordion_id = f"input-accordion-{InputAccordion.global_index}"
|
self.accordion_id = f"input-accordion-{InputAccordion.global_index}"
|
||||||
InputAccordion.global_index += 1
|
InputAccordion.global_index += 1
|
||||||
|
|
||||||
|
if not InputAccordion.accordion_id_set:
|
||||||
|
from modules import script_callbacks
|
||||||
|
script_callbacks.on_script_unloaded(InputAccordion.reset)
|
||||||
|
|
||||||
|
if self.accordion_id in InputAccordion.accordion_id_set:
|
||||||
|
count = 1
|
||||||
|
while (unique_id := f'{self.accordion_id}-{count}') in InputAccordion.accordion_id_set:
|
||||||
|
count += 1
|
||||||
|
self.accordion_id = unique_id
|
||||||
|
|
||||||
|
InputAccordion.accordion_id_set.add(self.accordion_id)
|
||||||
|
|
||||||
kwargs_checkbox = {
|
kwargs_checkbox = {
|
||||||
**kwargs,
|
**kwargs,
|
||||||
"elem_id": f"{self.accordion_id}-checkbox",
|
"elem_id": f"{self.accordion_id}-checkbox",
|
||||||
@ -143,3 +156,7 @@ class InputAccordion(gr.Checkbox):
|
|||||||
def get_block_name(self):
|
def get_block_name(self):
|
||||||
return "checkbox"
|
return "checkbox"
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def reset(cls):
|
||||||
|
cls.global_index = 0
|
||||||
|
cls.accordion_id_set.clear()
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
@ -106,18 +107,24 @@ def check_updates(id_task, disable_list):
|
|||||||
exts = [ext for ext in extensions.extensions if ext.remote is not None and ext.name not in disabled]
|
exts = [ext for ext in extensions.extensions if ext.remote is not None and ext.name not in disabled]
|
||||||
shared.state.job_count = len(exts)
|
shared.state.job_count = len(exts)
|
||||||
|
|
||||||
for ext in exts:
|
lock = threading.Lock()
|
||||||
shared.state.textinfo = ext.name
|
|
||||||
|
|
||||||
|
def _check_update(ext):
|
||||||
try:
|
try:
|
||||||
ext.check_updates()
|
ext.check_updates()
|
||||||
except FileNotFoundError as e:
|
except FileNotFoundError as e:
|
||||||
if 'FETCH_HEAD' not in str(e):
|
if 'FETCH_HEAD' not in str(e):
|
||||||
raise
|
raise
|
||||||
except Exception:
|
except Exception:
|
||||||
errors.report(f"Error checking updates for {ext.name}", exc_info=True)
|
with lock:
|
||||||
|
errors.report(f"Error checking updates for {ext.name}", exc_info=True)
|
||||||
|
with lock:
|
||||||
|
shared.state.textinfo = ext.name
|
||||||
|
shared.state.nextjob()
|
||||||
|
|
||||||
shared.state.nextjob()
|
with ThreadPoolExecutor(max_workers=max(1, int(shared.opts.concurrent_git_fetch_limit))) as executor:
|
||||||
|
for ext in exts:
|
||||||
|
executor.submit(_check_update, ext)
|
||||||
|
|
||||||
return extension_table(), ""
|
return extension_table(), ""
|
||||||
|
|
||||||
|
@ -177,10 +177,8 @@ def add_pages_to_demo(app):
|
|||||||
app.add_api_route("/sd_extra_networks/get-single-card", get_single_card, methods=["GET"])
|
app.add_api_route("/sd_extra_networks/get-single-card", get_single_card, methods=["GET"])
|
||||||
|
|
||||||
|
|
||||||
def quote_js(s):
|
def quote_js(s: str):
|
||||||
s = s.replace('\\', '\\\\')
|
return json.dumps(s, ensure_ascii=False)
|
||||||
s = s.replace('"', '\\"')
|
|
||||||
return f'"{s}"'
|
|
||||||
|
|
||||||
|
|
||||||
class ExtraNetworksPage:
|
class ExtraNetworksPage:
|
||||||
|
@ -176,7 +176,7 @@ class UiLoadsave:
|
|||||||
if new_value == old_value:
|
if new_value == old_value:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if old_value is None and new_value == '' or new_value == []:
|
if old_value is None and (new_value == '' or new_value == []):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
yield path, old_value, new_value
|
yield path, old_value, new_value
|
||||||
|
@ -93,13 +93,14 @@ class UpscalerData:
|
|||||||
scaler: Upscaler = None
|
scaler: Upscaler = None
|
||||||
model: None
|
model: None
|
||||||
|
|
||||||
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None):
|
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None, sha256: str = None):
|
||||||
self.name = name
|
self.name = name
|
||||||
self.data_path = path
|
self.data_path = path
|
||||||
self.local_data_path = path
|
self.local_data_path = path
|
||||||
self.scaler = upscaler
|
self.scaler = upscaler
|
||||||
self.scale = scale
|
self.scale = scale
|
||||||
self.model = model
|
self.model = model
|
||||||
|
self.sha256 = sha256
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return f"<UpscalerData name={self.name} path={self.data_path} scale={self.scale}>"
|
return f"<UpscalerData name={self.name} path={self.data_path} scale={self.scale}>"
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from __future__ import annotations
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
|
|
||||||
@ -211,3 +212,80 @@ Requested path was: {path}
|
|||||||
subprocess.Popen(["explorer.exe", subprocess.check_output(["wslpath", "-w", path])])
|
subprocess.Popen(["explorer.exe", subprocess.check_output(["wslpath", "-w", path])])
|
||||||
else:
|
else:
|
||||||
subprocess.Popen(["xdg-open", path])
|
subprocess.Popen(["xdg-open", path])
|
||||||
|
|
||||||
|
|
||||||
|
def load_file_from_url(
|
||||||
|
url: str,
|
||||||
|
*,
|
||||||
|
model_dir: str,
|
||||||
|
progress: bool = True,
|
||||||
|
file_name: str | None = None,
|
||||||
|
hash_prefix: str | None = None,
|
||||||
|
re_download: bool = False,
|
||||||
|
) -> str:
|
||||||
|
"""Download a file from `url` into `model_dir`, using the file present if possible.
|
||||||
|
Returns the path to the downloaded file.
|
||||||
|
|
||||||
|
file_name: if specified, it will be used as the filename, otherwise the filename will be extracted from the url.
|
||||||
|
file is downloaded to {file_name}.tmp then moved to the final location after download is complete.
|
||||||
|
hash_prefix: sha256 hex string, if provided, the hash of the downloaded file will be checked against this prefix.
|
||||||
|
if the hash does not match, the temporary file is deleted and a ValueError is raised.
|
||||||
|
re_download: forcibly re-download the file even if it already exists.
|
||||||
|
"""
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
import requests
|
||||||
|
try:
|
||||||
|
from tqdm import tqdm
|
||||||
|
except ImportError:
|
||||||
|
class tqdm:
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def update(self, n=1, *args, **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
pass
|
||||||
|
|
||||||
|
if not file_name:
|
||||||
|
parts = urlparse(url)
|
||||||
|
file_name = os.path.basename(parts.path)
|
||||||
|
|
||||||
|
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
|
||||||
|
|
||||||
|
if re_download or not os.path.exists(cached_file):
|
||||||
|
os.makedirs(model_dir, exist_ok=True)
|
||||||
|
temp_file = os.path.join(model_dir, f"{file_name}.tmp")
|
||||||
|
print(f'\nDownloading: "{url}" to {cached_file}')
|
||||||
|
response = requests.get(url, stream=True)
|
||||||
|
response.raise_for_status()
|
||||||
|
total_size = int(response.headers.get('content-length', 0))
|
||||||
|
with tqdm(total=total_size, unit='B', unit_scale=True, desc=file_name, disable=not progress) as progress_bar:
|
||||||
|
with open(temp_file, 'wb') as file:
|
||||||
|
for chunk in response.iter_content(chunk_size=1024):
|
||||||
|
if chunk:
|
||||||
|
file.write(chunk)
|
||||||
|
progress_bar.update(len(chunk))
|
||||||
|
|
||||||
|
if hash_prefix and not compare_sha256(temp_file, hash_prefix):
|
||||||
|
print(f"Hash mismatch for {temp_file}. Deleting the temporary file.")
|
||||||
|
os.remove(temp_file)
|
||||||
|
raise ValueError(f"File hash does not match the expected hash prefix {hash_prefix}!")
|
||||||
|
|
||||||
|
os.rename(temp_file, cached_file)
|
||||||
|
return cached_file
|
||||||
|
|
||||||
|
|
||||||
|
def compare_sha256(file_path: str, hash_prefix: str) -> bool:
|
||||||
|
"""Check if the SHA256 hash of the file matches the given prefix."""
|
||||||
|
import hashlib
|
||||||
|
hash_sha256 = hashlib.sha256()
|
||||||
|
blksize = 1024 * 1024
|
||||||
|
|
||||||
|
with open(file_path, "rb") as f:
|
||||||
|
for chunk in iter(lambda: f.read(blksize), b""):
|
||||||
|
hash_sha256.update(chunk)
|
||||||
|
return hash_sha256.hexdigest().startswith(hash_prefix.strip().lower())
|
||||||
|
49
modules/uv_hook.py
Normal file
49
modules/uv_hook.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import sys
|
||||||
|
import copy
|
||||||
|
import shlex
|
||||||
|
import subprocess
|
||||||
|
from functools import wraps
|
||||||
|
|
||||||
|
BAD_FLAGS = ("--prefer-binary", '-I', '--ignore-installed')
|
||||||
|
|
||||||
|
|
||||||
|
def patch():
|
||||||
|
if hasattr(subprocess, "__original_run"):
|
||||||
|
return
|
||||||
|
|
||||||
|
print("using uv")
|
||||||
|
try:
|
||||||
|
subprocess.run(['uv', '-V'])
|
||||||
|
except FileNotFoundError:
|
||||||
|
subprocess.run([sys.executable, '-m', 'pip', 'install', 'uv'])
|
||||||
|
|
||||||
|
subprocess.__original_run = subprocess.run
|
||||||
|
|
||||||
|
@wraps(subprocess.__original_run)
|
||||||
|
def patched_run(*args, **kwargs):
|
||||||
|
_kwargs = copy.copy(kwargs)
|
||||||
|
if args:
|
||||||
|
command, *_args = args
|
||||||
|
else:
|
||||||
|
command, _args = _kwargs.pop("args", ""), ()
|
||||||
|
|
||||||
|
if isinstance(command, str):
|
||||||
|
command = shlex.split(command)
|
||||||
|
else:
|
||||||
|
command = [arg.strip() for arg in command]
|
||||||
|
|
||||||
|
if not isinstance(command, list) or "pip" not in command:
|
||||||
|
return subprocess.__original_run(*args, **kwargs)
|
||||||
|
|
||||||
|
cmd = command[command.index("pip") + 1:]
|
||||||
|
|
||||||
|
cmd = [arg for arg in cmd if arg not in BAD_FLAGS]
|
||||||
|
|
||||||
|
modified_command = ["uv", "pip", *cmd]
|
||||||
|
|
||||||
|
result = subprocess.__original_run([*modified_command, *_args], **_kwargs)
|
||||||
|
if result.returncode != 0:
|
||||||
|
return subprocess.__original_run(*args, **kwargs)
|
||||||
|
return result
|
||||||
|
|
||||||
|
subprocess.run = patched_run
|
@ -22,7 +22,7 @@ protobuf==3.20.0
|
|||||||
psutil==5.9.5
|
psutil==5.9.5
|
||||||
pytorch_lightning==1.9.4
|
pytorch_lightning==1.9.4
|
||||||
resize-right==0.0.2
|
resize-right==0.0.2
|
||||||
safetensors==0.4.2
|
safetensors==0.4.5
|
||||||
scikit-image==0.21.0
|
scikit-image==0.21.0
|
||||||
spandrel==0.3.4
|
spandrel==0.3.4
|
||||||
spandrel-extra-arches==0.1.1
|
spandrel-extra-arches==0.1.1
|
||||||
|
@ -182,7 +182,7 @@ document.addEventListener('keydown', function(e) {
|
|||||||
const lightboxModal = document.querySelector('#lightboxModal');
|
const lightboxModal = document.querySelector('#lightboxModal');
|
||||||
if (!globalPopup || globalPopup.style.display === 'none') {
|
if (!globalPopup || globalPopup.style.display === 'none') {
|
||||||
if (document.activeElement === lightboxModal) return;
|
if (document.activeElement === lightboxModal) return;
|
||||||
if (interruptButton.style.display === 'block') {
|
if (interruptButton?.style.display === 'block') {
|
||||||
interruptButton.click();
|
interruptButton.click();
|
||||||
e.preventDefault();
|
e.preventDefault();
|
||||||
}
|
}
|
||||||
|
@ -12,8 +12,8 @@ class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing
|
|||||||
def ui(self):
|
def ui(self):
|
||||||
with ui_components.InputAccordion(False, label="CodeFormer") as enable:
|
with ui_components.InputAccordion(False, label="CodeFormer") as enable:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_codeformer_visibility")
|
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id=self.elem_id_suffix("extras_codeformer_visibility"))
|
||||||
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
|
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id=self.elem_id_suffix("extras_codeformer_weight"))
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"enable": enable,
|
"enable": enable,
|
||||||
@ -29,6 +29,10 @@ class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing
|
|||||||
res = Image.fromarray(restored_img)
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
if codeformer_visibility < 1.0:
|
if codeformer_visibility < 1.0:
|
||||||
|
if pp.image.size != res.size:
|
||||||
|
res = res.resize(pp.image.size)
|
||||||
|
if pp.image.mode != res.mode:
|
||||||
|
res = res.convert(pp.image.mode)
|
||||||
res = Image.blend(pp.image, res, codeformer_visibility)
|
res = Image.blend(pp.image, res, codeformer_visibility)
|
||||||
|
|
||||||
pp.image = res
|
pp.image = res
|
||||||
|
@ -11,7 +11,7 @@ class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
|
|||||||
|
|
||||||
def ui(self):
|
def ui(self):
|
||||||
with ui_components.InputAccordion(False, label="GFPGAN") as enable:
|
with ui_components.InputAccordion(False, label="GFPGAN") as enable:
|
||||||
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_gfpgan_visibility")
|
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id=self.elem_id_suffix("extras_gfpgan_visibility"))
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"enable": enable,
|
"enable": enable,
|
||||||
@ -26,6 +26,10 @@ class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
|
|||||||
res = Image.fromarray(restored_img)
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
if gfpgan_visibility < 1.0:
|
if gfpgan_visibility < 1.0:
|
||||||
|
if pp.image.size != res.size:
|
||||||
|
res = res.resize(pp.image.size)
|
||||||
|
if pp.image.mode != res.mode:
|
||||||
|
res = res.convert(pp.image.mode)
|
||||||
res = Image.blend(pp.image, res, gfpgan_visibility)
|
res = Image.blend(pp.image, res, gfpgan_visibility)
|
||||||
|
|
||||||
pp.image = res
|
pp.image = res
|
||||||
|
@ -30,31 +30,31 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
|
|||||||
def ui(self):
|
def ui(self):
|
||||||
selected_tab = gr.Number(value=0, visible=False)
|
selected_tab = gr.Number(value=0, visible=False)
|
||||||
|
|
||||||
with InputAccordion(True, label="Upscale", elem_id="extras_upscale") as upscale_enabled:
|
with InputAccordion(True, label="Upscale", elem_id=self.elem_id_suffix("extras_upscale")) as upscale_enabled:
|
||||||
with FormRow():
|
with FormRow():
|
||||||
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
|
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id=self.elem_id_suffix("extras_upscaler_1"), choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
|
||||||
|
|
||||||
with FormRow():
|
with FormRow():
|
||||||
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
|
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id=self.elem_id_suffix("extras_upscaler_2"), choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
|
||||||
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
|
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id=self.elem_id_suffix("extras_upscaler_2_visibility"))
|
||||||
|
|
||||||
with FormRow():
|
with FormRow():
|
||||||
with gr.Tabs(elem_id="extras_resize_mode"):
|
with gr.Tabs(elem_id=self.elem_id_suffix("extras_resize_mode")):
|
||||||
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
|
with gr.TabItem('Scale by', elem_id=self.elem_id_suffix("extras_scale_by_tab")) as tab_scale_by:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column(scale=4):
|
with gr.Column(scale=4):
|
||||||
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
|
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id=self.elem_id_suffix("extras_upscaling_resize"))
|
||||||
with gr.Column(scale=1, min_width=160):
|
with gr.Column(scale=1, min_width=160):
|
||||||
max_side_length = gr.Number(label="Max side length", value=0, elem_id="extras_upscale_max_side_length", tooltip="If any of two sides of the image ends up larger than specified, will downscale it to fit. 0 = no limit.", min_width=160, step=8, minimum=0)
|
max_side_length = gr.Number(label="Max side length", value=0, elem_id=self.elem_id_suffix("extras_upscale_max_side_length"), tooltip="If any of two sides of the image ends up larger than specified, will downscale it to fit. 0 = no limit.", min_width=160, step=8, minimum=0)
|
||||||
|
|
||||||
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
|
with gr.TabItem('Scale to', elem_id=self.elem_id_suffix("extras_scale_to_tab")) as tab_scale_to:
|
||||||
with FormRow():
|
with FormRow():
|
||||||
with gr.Column(elem_id="upscaling_column_size", scale=4):
|
with gr.Column(elem_id=self.elem_id_suffix("upscaling_column_size"), scale=4):
|
||||||
upscaling_resize_w = gr.Slider(minimum=64, maximum=8192, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w")
|
upscaling_resize_w = gr.Slider(minimum=64, maximum=8192, step=8, label="Width", value=512, elem_id=self.elem_id_suffix("extras_upscaling_resize_w"))
|
||||||
upscaling_resize_h = gr.Slider(minimum=64, maximum=8192, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h")
|
upscaling_resize_h = gr.Slider(minimum=64, maximum=8192, step=8, label="Height", value=512, elem_id=self.elem_id_suffix("extras_upscaling_resize_h"))
|
||||||
with gr.Column(elem_id="upscaling_dimensions_row", scale=1, elem_classes="dimensions-tools"):
|
with gr.Column(elem_id=self.elem_id_suffix("upscaling_dimensions_row"), scale=1, elem_classes="dimensions-tools"):
|
||||||
upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn", tooltip="Switch width/height")
|
upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id=self.elem_id_suffix("upscaling_res_switch_btn"), tooltip="Switch width/height")
|
||||||
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
|
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id=self.elem_id_suffix("extras_upscaling_crop"))
|
||||||
|
|
||||||
def on_selected_upscale_method(upscale_method):
|
def on_selected_upscale_method(upscale_method):
|
||||||
if not shared.opts.set_scale_by_when_changing_upscaler:
|
if not shared.opts.set_scale_by_when_changing_upscaler:
|
||||||
@ -169,6 +169,7 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
|
|||||||
class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
|
class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
|
||||||
name = "Simple Upscale"
|
name = "Simple Upscale"
|
||||||
order = 900
|
order = 900
|
||||||
|
main_ui_only = True
|
||||||
|
|
||||||
def ui(self):
|
def ui(self):
|
||||||
with FormRow():
|
with FormRow():
|
||||||
|
@ -20,7 +20,7 @@ import modules.sd_models
|
|||||||
import modules.sd_vae
|
import modules.sd_vae
|
||||||
import re
|
import re
|
||||||
|
|
||||||
from modules.ui_components import ToolButton
|
from modules.ui_components import ToolButton, InputAccordion
|
||||||
|
|
||||||
fill_values_symbol = "\U0001f4d2" # 📒
|
fill_values_symbol = "\U0001f4d2" # 📒
|
||||||
|
|
||||||
@ -259,6 +259,7 @@ axis_options = [
|
|||||||
AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
|
AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
|
||||||
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
|
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
|
||||||
AxisOption("Schedule rho", float, apply_override("rho")),
|
AxisOption("Schedule rho", float, apply_override("rho")),
|
||||||
|
AxisOption("Skip Early CFG", float, apply_override('skip_early_cond')),
|
||||||
AxisOption("Beta schedule alpha", float, apply_override("beta_dist_alpha")),
|
AxisOption("Beta schedule alpha", float, apply_override("beta_dist_alpha")),
|
||||||
AxisOption("Beta schedule beta", float, apply_override("beta_dist_beta")),
|
AxisOption("Beta schedule beta", float, apply_override("beta_dist_beta")),
|
||||||
AxisOption("Eta", float, apply_field("eta")),
|
AxisOption("Eta", float, apply_field("eta")),
|
||||||
@ -284,7 +285,7 @@ axis_options = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size):
|
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size, draw_grid):
|
||||||
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
||||||
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
||||||
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
|
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
|
||||||
@ -369,29 +370,30 @@ def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend
|
|||||||
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
|
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
|
||||||
return Processed(p, [])
|
return Processed(p, [])
|
||||||
|
|
||||||
z_count = len(zs)
|
if draw_grid:
|
||||||
|
z_count = len(zs)
|
||||||
|
|
||||||
for i in range(z_count):
|
for i in range(z_count):
|
||||||
start_index = (i * len(xs) * len(ys)) + i
|
start_index = (i * len(xs) * len(ys)) + i
|
||||||
end_index = start_index + len(xs) * len(ys)
|
end_index = start_index + len(xs) * len(ys)
|
||||||
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
|
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
|
||||||
|
if draw_legend:
|
||||||
|
grid_max_w, grid_max_h = map(max, zip(*(img.size for img in processed_result.images[start_index:end_index])))
|
||||||
|
grid = images.draw_grid_annotations(grid, grid_max_w, grid_max_h, hor_texts, ver_texts, margin_size)
|
||||||
|
processed_result.images.insert(i, grid)
|
||||||
|
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
|
||||||
|
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
|
||||||
|
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
|
||||||
|
|
||||||
|
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
|
||||||
|
z_sub_grid_max_w, z_sub_grid_max_h = map(max, zip(*(img.size for img in processed_result.images[:z_count])))
|
||||||
if draw_legend:
|
if draw_legend:
|
||||||
grid_max_w, grid_max_h = map(max, zip(*(img.size for img in processed_result.images[start_index:end_index])))
|
z_grid = images.draw_grid_annotations(z_grid, z_sub_grid_max_w, z_sub_grid_max_h, title_texts, [[images.GridAnnotation()]])
|
||||||
grid = images.draw_grid_annotations(grid, grid_max_w, grid_max_h, hor_texts, ver_texts, margin_size)
|
processed_result.images.insert(0, z_grid)
|
||||||
processed_result.images.insert(i, grid)
|
# TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
|
||||||
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
|
# processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
|
||||||
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
|
# processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
|
||||||
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
|
processed_result.infotexts.insert(0, processed_result.infotexts[0])
|
||||||
|
|
||||||
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
|
|
||||||
z_sub_grid_max_w, z_sub_grid_max_h = map(max, zip(*(img.size for img in processed_result.images[:z_count])))
|
|
||||||
if draw_legend:
|
|
||||||
z_grid = images.draw_grid_annotations(z_grid, z_sub_grid_max_w, z_sub_grid_max_h, title_texts, [[images.GridAnnotation()]])
|
|
||||||
processed_result.images.insert(0, z_grid)
|
|
||||||
# TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
|
|
||||||
# processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
|
|
||||||
# processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
|
|
||||||
processed_result.infotexts.insert(0, processed_result.infotexts[0])
|
|
||||||
|
|
||||||
return processed_result
|
return processed_result
|
||||||
|
|
||||||
@ -441,7 +443,6 @@ class Script(scripts.Script):
|
|||||||
|
|
||||||
with gr.Row(variant="compact", elem_id="axis_options"):
|
with gr.Row(variant="compact", elem_id="axis_options"):
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
|
|
||||||
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
|
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
vary_seeds_x = gr.Checkbox(label='Vary seeds for X', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_x"), tooltip="Use different seeds for images along X axis.")
|
vary_seeds_x = gr.Checkbox(label='Vary seeds for X', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_x"), tooltip="Use different seeds for images along X axis.")
|
||||||
@ -449,9 +450,12 @@ class Script(scripts.Script):
|
|||||||
vary_seeds_z = gr.Checkbox(label='Vary seeds for Z', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_z"), tooltip="Use different seeds for images along Z axis.")
|
vary_seeds_z = gr.Checkbox(label='Vary seeds for Z', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_z"), tooltip="Use different seeds for images along Z axis.")
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
|
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
|
||||||
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
|
|
||||||
csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False, elem_id=self.elem_id("csv_mode"))
|
csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False, elem_id=self.elem_id("csv_mode"))
|
||||||
with gr.Column():
|
|
||||||
|
with InputAccordion(True, label='Draw grid', elem_id=self.elem_id('draw_grid')) as draw_grid:
|
||||||
|
with gr.Row():
|
||||||
|
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
|
||||||
|
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
|
||||||
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
||||||
|
|
||||||
with gr.Row(variant="compact", elem_id="swap_axes"):
|
with gr.Row(variant="compact", elem_id="swap_axes"):
|
||||||
@ -533,9 +537,9 @@ class Script(scripts.Script):
|
|||||||
(z_values_dropdown, lambda params: get_dropdown_update_from_params("Z", params)),
|
(z_values_dropdown, lambda params: get_dropdown_update_from_params("Z", params)),
|
||||||
)
|
)
|
||||||
|
|
||||||
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]
|
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode, draw_grid]
|
||||||
|
|
||||||
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode):
|
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode, draw_grid):
|
||||||
x_type, y_type, z_type = x_type or 0, y_type or 0, z_type or 0 # if axle type is None set to 0
|
x_type, y_type, z_type = x_type or 0, y_type or 0, z_type or 0 # if axle type is None set to 0
|
||||||
|
|
||||||
if not no_fixed_seeds:
|
if not no_fixed_seeds:
|
||||||
@ -780,7 +784,8 @@ class Script(scripts.Script):
|
|||||||
include_sub_grids=include_sub_grids,
|
include_sub_grids=include_sub_grids,
|
||||||
first_axes_processed=first_axes_processed,
|
first_axes_processed=first_axes_processed,
|
||||||
second_axes_processed=second_axes_processed,
|
second_axes_processed=second_axes_processed,
|
||||||
margin_size=margin_size
|
margin_size=margin_size,
|
||||||
|
draw_grid=draw_grid,
|
||||||
)
|
)
|
||||||
|
|
||||||
if not processed.images:
|
if not processed.images:
|
||||||
@ -789,14 +794,15 @@ class Script(scripts.Script):
|
|||||||
|
|
||||||
z_count = len(zs)
|
z_count = len(zs)
|
||||||
|
|
||||||
# Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
|
if draw_grid:
|
||||||
processed.infotexts[:1 + z_count] = grid_infotext[:1 + z_count]
|
# Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
|
||||||
|
processed.infotexts[:1 + z_count] = grid_infotext[:1 + z_count]
|
||||||
|
|
||||||
if not include_lone_images:
|
if not include_lone_images:
|
||||||
# Don't need sub-images anymore, drop from list:
|
# Don't need sub-images anymore, drop from list:
|
||||||
processed.images = processed.images[:z_count + 1]
|
processed.images = processed.images[:z_count + 1] if draw_grid else []
|
||||||
|
|
||||||
if opts.grid_save:
|
if draw_grid and opts.grid_save:
|
||||||
# Auto-save main and sub-grids:
|
# Auto-save main and sub-grids:
|
||||||
grid_count = z_count + 1 if z_count > 1 else 1
|
grid_count = z_count + 1 if z_count > 1 else 1
|
||||||
for g in range(grid_count):
|
for g in range(grid_count):
|
||||||
@ -806,7 +812,7 @@ class Script(scripts.Script):
|
|||||||
if not include_sub_grids: # if not include_sub_grids then skip saving after the first grid
|
if not include_sub_grids: # if not include_sub_grids then skip saving after the first grid
|
||||||
break
|
break
|
||||||
|
|
||||||
if not include_sub_grids:
|
if draw_grid and not include_sub_grids:
|
||||||
# Done with sub-grids, drop all related information:
|
# Done with sub-grids, drop all related information:
|
||||||
for _ in range(z_count):
|
for _ in range(z_count):
|
||||||
del processed.images[1]
|
del processed.images[1]
|
||||||
|
@ -480,8 +480,10 @@ div.toprow-compact-tools{
|
|||||||
}
|
}
|
||||||
|
|
||||||
#settings_result{
|
#settings_result{
|
||||||
height: 1.4em;
|
min-height: 1.4em;
|
||||||
margin: 0 1.2em;
|
margin: 0 1.2em;
|
||||||
|
max-height: calc(var(--text-md) * var(--line-sm) * 5);
|
||||||
|
overflow-y: auto;
|
||||||
}
|
}
|
||||||
|
|
||||||
table.popup-table{
|
table.popup-table{
|
||||||
@ -600,6 +602,7 @@ table.popup-table .link{
|
|||||||
background: var(--background-fill-primary);
|
background: var(--background-fill-primary);
|
||||||
width: 100%;
|
width: 100%;
|
||||||
height: 100%;
|
height: 100%;
|
||||||
|
pointer-events: none;
|
||||||
}
|
}
|
||||||
|
|
||||||
.livePreview img{
|
.livePreview img{
|
||||||
|
11
webui.bat
11
webui.bat
@ -4,7 +4,16 @@ if exist webui.settings.bat (
|
|||||||
call webui.settings.bat
|
call webui.settings.bat
|
||||||
)
|
)
|
||||||
|
|
||||||
if not defined PYTHON (set PYTHON=python)
|
if not defined PYTHON (
|
||||||
|
for /f "delims=" %%A in ('where python ^| findstr /n . ^| findstr ^^1:') do (
|
||||||
|
if /i "%%~xA" == ".exe" (
|
||||||
|
set PYTHON=python
|
||||||
|
) else (
|
||||||
|
set PYTHON=call python
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
if defined GIT (set "GIT_PYTHON_GIT_EXECUTABLE=%GIT%")
|
if defined GIT (set "GIT_PYTHON_GIT_EXECUTABLE=%GIT%")
|
||||||
if not defined VENV_DIR (set "VENV_DIR=%~dp0%venv")
|
if not defined VENV_DIR (set "VENV_DIR=%~dp0%venv")
|
||||||
|
|
||||||
|
45
webui.py
45
webui.py
@ -66,12 +66,53 @@ def monitorar_comandos():
|
|||||||
print(f"Unknown server command: {server_command}")
|
print(f"Unknown server command: {server_command}")
|
||||||
|
|
||||||
|
|
||||||
|
def warning_if_invalid_install_dir():
|
||||||
|
"""
|
||||||
|
Shows a warning if the webui is installed under a path that contains a leading dot in any of its parent directories.
|
||||||
|
|
||||||
|
Gradio '/file=' route will block access to files that have a leading dot in the path segments.
|
||||||
|
We use this route to serve files such as JavaScript and CSS to the webpage,
|
||||||
|
if those files are blocked, the webpage will not function properly.
|
||||||
|
See https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13292
|
||||||
|
|
||||||
|
This is a security feature was added to Gradio 3.32.0 and is removed in later versions,
|
||||||
|
this function replicates Gradio file access blocking logic.
|
||||||
|
|
||||||
|
This check should be removed when it's no longer applicable.
|
||||||
|
"""
|
||||||
|
from packaging.version import parse
|
||||||
|
from pathlib import Path
|
||||||
|
import gradio
|
||||||
|
|
||||||
|
if parse('3.32.0') <= parse(gradio.__version__) < parse('4'):
|
||||||
|
|
||||||
|
def abspath(path):
|
||||||
|
"""modified from Gradio 3.41.2 gradio.utils.abspath()"""
|
||||||
|
if path.is_absolute():
|
||||||
|
return path
|
||||||
|
is_symlink = path.is_symlink() or any(parent.is_symlink() for parent in path.parents)
|
||||||
|
return Path.cwd() / path if (is_symlink or path == path.resolve()) else path.resolve()
|
||||||
|
|
||||||
|
webui_root = Path(__file__).parent
|
||||||
|
if any(part.startswith(".") for part in abspath(webui_root).parts):
|
||||||
|
print(f'''{"!"*25} Warning {"!"*25}
|
||||||
|
WebUI is installed in a directory that has a leading dot (.) in one of its parent directories.
|
||||||
|
This will prevent WebUI from functioning properly.
|
||||||
|
Please move the installation to a different directory.
|
||||||
|
Current path: "{webui_root}"
|
||||||
|
For more information see: https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13292
|
||||||
|
{"!"*25} Warning {"!"*25}''')
|
||||||
|
|
||||||
|
|
||||||
def webui():
|
def webui():
|
||||||
initialize.initialize()
|
initialize.initialize()
|
||||||
from modules import shared, ui_tempdir, script_callbacks, ui, progress, ui_extra_networks
|
from modules import shared, ui_tempdir, script_callbacks, ui, progress, ui_extra_networks
|
||||||
|
|
||||||
while True:
|
warning_if_invalid_install_dir()
|
||||||
limpar_temp_dir()
|
|
||||||
|
while True:
|
||||||
|
limpar_temp_dir()
|
||||||
|
|
||||||
script_callbacks.before_ui_callback()
|
script_callbacks.before_ui_callback()
|
||||||
startup_timer.record("scripts before_ui_callback")
|
startup_timer.record("scripts before_ui_callback")
|
||||||
|
|
||||||
|
2
webui.sh
2
webui.sh
@ -127,7 +127,7 @@ then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
# Check prerequisites
|
# Check prerequisites
|
||||||
gpu_info=$(lspci 2>/dev/null | grep -E "VGA|Display")
|
gpu_info=$(lspci 2>/dev/null | grep -E "VGA|Display|CMP")
|
||||||
case "$gpu_info" in
|
case "$gpu_info" in
|
||||||
*"Navi 1"*)
|
*"Navi 1"*)
|
||||||
export HSA_OVERRIDE_GFX_VERSION=10.3.0
|
export HSA_OVERRIDE_GFX_VERSION=10.3.0
|
||||||
|
Loading…
Reference in New Issue
Block a user