Merge branch 'dev' into refactor/webui-function

This commit is contained in:
Lucas Santos 2025-06-25 20:54:24 -03:00 committed by GitHub
commit f655417171
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
55 changed files with 699 additions and 239 deletions

View File

@ -88,6 +88,7 @@ module.exports = {
// imageviewer.js
modalPrevImage: "readonly",
modalNextImage: "readonly",
updateModalImageIfVisible: "readonly",
// localStorage.js
localSet: "readonly",
localGet: "readonly",

View File

@ -22,7 +22,7 @@ jobs:
- name: Install Ruff
run: pip install ruff==0.3.3
- name: Run Ruff
run: ruff .
run: ruff check .
lint-js:
name: eslint
runs-on: ubuntu-latest

View File

@ -1,12 +1 @@
* @AUTOMATIC1111
# if you were managing a localization and were removed from this file, this is because
# the intended way to do localizations now is via extensions. See:
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
# Make a repo with your localization and since you are still listed as a collaborator
# you can add it to the wiki page yourself. This change is because some people complained
# the git commit log is cluttered with things unrelated to almost everyone and
# because I believe this is the best overall for the project to handle localizations almost
# entirely without my oversight.
* @AUTOMATIC1111 @w-e-w @catboxanon

View File

@ -133,7 +133,7 @@ If your system is very new, you need to install python3.11 or python3.10:
# Ubuntu 24.04
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt update
sudo apt install python3.11
sudo apt install python3.11 python3.11-venv
# Manjaro/Arch
sudo pacman -S yay
@ -148,6 +148,7 @@ python_cmd="python3.11"
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
chmod +x webui.sh
```
Or just clone the repo wherever you want:
```bash

98
configs/sd_xl_v.yaml Normal file
View File

@ -0,0 +1,98 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.13025
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.VWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: False
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
# crossattn cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
params:
layer: hidden
layer_idx: 11
# crossattn and vector cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
freeze: True
layer: penultimate
always_return_pooled: True
legacy: False
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: target_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

View File

@ -816,7 +816,7 @@ onUiLoaded(async() => {
// Increase or decrease brush size based on scroll direction
adjustBrushSize(elemId, e.deltaY);
}
});
}, {passive: false});
// Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element.
function handleMoveKeyDown(e) {

View File

@ -1,7 +1,7 @@
"""
Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE
Warn: The patch works well only if the input image has a width and height that are multiples of 128
Original author: @tfernd Github: https://github.com/tfernd/HyperTile
Original author: @tfernd GitHub: https://github.com/tfernd/HyperTile
"""
from __future__ import annotations

View File

@ -34,14 +34,14 @@ class ScriptPostprocessingAutosizedCrop(scripts_postprocessing.ScriptPostprocess
with ui_components.InputAccordion(False, label="Auto-sized crop") as enable:
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
with gr.Row():
mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="postprocess_multicrop_mindim")
maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="postprocess_multicrop_maxdim")
mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id=self.elem_id_suffix("postprocess_multicrop_mindim"))
maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id=self.elem_id_suffix("postprocess_multicrop_maxdim"))
with gr.Row():
minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id="postprocess_multicrop_minarea")
maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id="postprocess_multicrop_maxarea")
minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id=self.elem_id_suffix("postprocess_multicrop_minarea"))
maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id=self.elem_id_suffix("postprocess_multicrop_maxarea"))
with gr.Row():
objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="postprocess_multicrop_objective")
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="postprocess_multicrop_threshold")
objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id=self.elem_id_suffix("postprocess_multicrop_objective"))
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id=self.elem_id_suffix("postprocess_multicrop_threshold"))
return {
"enable": enable,

View File

@ -11,10 +11,10 @@ class ScriptPostprocessingFocalCrop(scripts_postprocessing.ScriptPostprocessing)
def ui(self):
with ui_components.InputAccordion(False, label="Auto focal point crop") as enable:
face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_face_weight")
entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_entropy_weight")
edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_edges_weight")
debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_focal_crop_face_weight"))
entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_focal_crop_entropy_weight"))
edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_focal_crop_edges_weight"))
debug = gr.Checkbox(label='Create debug image', elem_id=self.elem_id_suffix("train_process_focal_crop_debug"))
return {
"enable": enable,

View File

@ -35,8 +35,8 @@ class ScriptPostprocessingSplitOversized(scripts_postprocessing.ScriptPostproces
def ui(self):
with ui_components.InputAccordion(False, label="Split oversized images") as enable:
with gr.Row():
split_threshold = gr.Slider(label='Threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_split_threshold")
overlap_ratio = gr.Slider(label='Overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="postprocess_overlap_ratio")
split_threshold = gr.Slider(label='Threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id=self.elem_id_suffix("postprocess_split_threshold"))
overlap_ratio = gr.Slider(label='Overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id=self.elem_id_suffix("postprocess_overlap_ratio"))
return {
"enable": enable,

View File

@ -1,36 +1,69 @@
// Stable Diffusion WebUI - Bracket checker
// By Hingashi no Florin/Bwin4L & @akx
// Stable Diffusion WebUI - Bracket Checker
// By @Bwin4L, @akx, @w-e-w, @Haoming02
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
// If there's a mismatch, the keyword counter turns red, and if you hover on it, a tooltip tells you what's wrong.
function checkBrackets(textArea, counterElt) {
var counts = {};
(textArea.value.match(/[(){}[\]]/g) || []).forEach(bracket => {
counts[bracket] = (counts[bracket] || 0) + 1;
});
var errors = [];
function checkBrackets(textArea, counterElem) {
const pairs = [
['(', ')', 'round brackets'],
['[', ']', 'square brackets'],
['{', '}', 'curly brackets']
];
function checkPair(open, close, kind) {
if (counts[open] !== counts[close]) {
errors.push(
`${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.`
);
const counts = {};
const errors = new Set();
let i = 0;
while (i < textArea.value.length) {
let char = textArea.value[i];
let escaped = false;
while (char === '\\' && i + 1 < textArea.value.length) {
escaped = !escaped;
i++;
char = textArea.value[i];
}
if (escaped) {
i++;
continue;
}
for (const [open, close, label] of pairs) {
if (char === open) {
counts[label] = (counts[label] || 0) + 1;
} else if (char === close) {
counts[label] = (counts[label] || 0) - 1;
if (counts[label] < 0) {
errors.add(`Incorrect order of ${label}.`);
}
}
}
i++;
}
for (const [open, close, label] of pairs) {
if (counts[label] == undefined) {
continue;
}
if (counts[label] > 0) {
errors.add(`${open} ... ${close} - Detected ${counts[label]} more opening than closing ${label}.`);
} else if (counts[label] < 0) {
errors.add(`${open} ... ${close} - Detected ${-counts[label]} more closing than opening ${label}.`);
}
}
checkPair('(', ')', 'round brackets');
checkPair('[', ']', 'square brackets');
checkPair('{', '}', 'curly brackets');
counterElt.title = errors.join('\n');
counterElt.classList.toggle('error', errors.length !== 0);
counterElem.title = [...errors].join('\n');
counterElem.classList.toggle('error', errors.size !== 0);
}
function setupBracketChecking(id_prompt, id_counter) {
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
var counter = gradioApp().getElementById(id_counter);
const textarea = gradioApp().querySelector(`#${id_prompt} > label > textarea`);
const counter = gradioApp().getElementById(id_counter);
if (textarea && counter) {
textarea.addEventListener("input", () => checkBrackets(textarea, counter));
onEdit(`${id_prompt}_BracketChecking`, textarea, 400, () => checkBrackets(textarea, counter));
}
}

View File

@ -1,7 +1,7 @@
<div>
<a href="{api_docs}">API</a>
<a href="{api_docs}" target="_blank">API</a>
 • 
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">GitHub</a>
 • 
<a href="https://gradio.app">Gradio</a>
 • 

View File

@ -104,7 +104,7 @@ var contextMenuInit = function() {
e.preventDefault();
}
});
});
}, {passive: false});
});
eventListenerApplied = true;

View File

@ -201,7 +201,7 @@ function setupExtraNetworks() {
setupExtraNetworksForTab('img2img');
}
var re_extranet = /<([^:^>]+:[^:]+):[\d.]+>(.*)/;
var re_extranet = /<([^:^>]+:[^:]+):[\d.]+>(.*)/s;
var re_extranet_g = /<([^:^>]+:[^:]+):[\d.]+>/g;
var re_extranet_neg = /\(([^:^>]+:[\d.]+)\)/;

View File

@ -13,6 +13,7 @@ function showModal(event) {
if (modalImage.style.display === 'none') {
lb.style.setProperty('background-image', 'url(' + source.src + ')');
}
updateModalImage();
lb.style.display = "flex";
lb.focus();
@ -31,24 +32,30 @@ function negmod(n, m) {
return ((n % m) + m) % m;
}
function updateOnBackgroundChange() {
function updateModalImage() {
const modalImage = gradioApp().getElementById("modalImage");
if (modalImage && modalImage.offsetParent) {
let currentButton = selected_gallery_button();
let preview = gradioApp().querySelectorAll('.livePreview > img');
if (opts.js_live_preview_in_modal_lightbox && preview.length > 0) {
// show preview image if available
modalImage.src = preview[preview.length - 1].src;
} else if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
modalImage.src = currentButton.children[0].src;
if (modalImage.style.display === 'none') {
const modal = gradioApp().getElementById("lightboxModal");
modal.style.setProperty('background-image', `url(${modalImage.src})`);
}
let currentButton = selected_gallery_button();
let preview = gradioApp().querySelectorAll('.livePreview > img');
if (opts.js_live_preview_in_modal_lightbox && preview.length > 0) {
// show preview image if available
modalImage.src = preview[preview.length - 1].src;
} else if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
modalImage.src = currentButton.children[0].src;
if (modalImage.style.display === 'none') {
const modal = gradioApp().getElementById("lightboxModal");
modal.style.setProperty('background-image', `url(${modalImage.src})`);
}
}
}
function updateOnBackgroundChange() {
const modalImage = gradioApp().getElementById("modalImage");
if (modalImage && modalImage.offsetParent) {
updateModalImage();
}
}
const updateModalImageIfVisible = updateOnBackgroundChange;
function modalImageSwitch(offset) {
var galleryButtons = all_gallery_buttons();
@ -158,6 +165,7 @@ function modalLivePreviewToggle(event) {
const modalToggleLivePreview = gradioApp().getElementById("modal_toggle_live_preview");
opts.js_live_preview_in_modal_lightbox = !opts.js_live_preview_in_modal_lightbox;
modalToggleLivePreview.innerHTML = opts.js_live_preview_in_modal_lightbox ? "&#x1F5C7;" : "&#x1F5C6;";
updateModalImageIfVisible();
event.stopPropagation();
}

View File

@ -79,11 +79,12 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
var wakeLock = null;
var requestWakeLock = async function() {
if (!opts.prevent_screen_sleep_during_generation || wakeLock) return;
if (!opts.prevent_screen_sleep_during_generation || wakeLock !== null) return;
try {
wakeLock = await navigator.wakeLock.request('screen');
} catch (err) {
console.error('Wake Lock is not supported.');
wakeLock = false;
}
};
@ -189,7 +190,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
livePreview.className = 'livePreview';
gallery.insertBefore(livePreview, gallery.firstElementChild);
}
updateModalImageIfVisible();
livePreview.appendChild(img);
if (livePreview.childElementCount > 2) {
livePreview.removeChild(livePreview.firstElementChild);

View File

@ -124,7 +124,7 @@
} else {
R.screenX = evt.changedTouches[0].screenX;
}
});
}, {passive: false});
});
resizeHandle.addEventListener('dblclick', onDoubleClick);

View File

@ -6,6 +6,11 @@ git = launch_utils.git
index_url = launch_utils.index_url
dir_repos = launch_utils.dir_repos
if args.uv:
from modules.uv_hook import patch
patch()
commit_hash = launch_utils.commit_hash
git_tag = launch_utils.git_tag

View File

@ -122,7 +122,7 @@ def encode_pil_to_base64(image):
if opts.samples_format.lower() in ("jpg", "jpeg"):
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
else:
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality, lossless=opts.webp_lossless)
else:
raise HTTPException(status_code=500, detail="Invalid image format")

View File

@ -126,3 +126,4 @@ parser.add_argument("--skip-load-model-at-start", action='store_true', help="if
parser.add_argument("--unix-filenames-sanitization", action='store_true', help="allow any symbols except '/' in filenames. May conflict with your browser and file system")
parser.add_argument("--filenames-max-length", type=int, default=128, help='maximal length of filenames of saved images. If you override it, it can conflict with your file system')
parser.add_argument("--no-prompt-history", action='store_true', help="disable read prompt from last generation feature; settings this argument will not create '--data_path/params.txt' file")
parser.add_argument("--uv", action='store_true', help="use the uv package manager")

View File

@ -1,7 +1,7 @@
import os
from modules import modelloader, errors
from modules.shared import cmd_opts, opts
from modules.shared import cmd_opts, opts, hf_endpoint
from modules.upscaler import Upscaler, UpscalerData
from modules.upscaler_utils import upscale_with_model
@ -49,7 +49,18 @@ class UpscalerDAT(Upscaler):
scaler.local_data_path = modelloader.load_file_from_url(
scaler.data_path,
model_dir=self.model_download_path,
hash_prefix=scaler.sha256,
)
if os.path.getsize(scaler.local_data_path) < 200:
# Re-download if the file is too small, probably an LFS pointer
scaler.local_data_path = modelloader.load_file_from_url(
scaler.data_path,
model_dir=self.model_download_path,
hash_prefix=scaler.sha256,
re_download=True,
)
if not os.path.exists(scaler.local_data_path):
raise FileNotFoundError(f"DAT data missing: {scaler.local_data_path}")
return scaler
@ -60,20 +71,23 @@ def get_dat_models(scaler):
return [
UpscalerData(
name="DAT x2",
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x2.pth",
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x2.pth",
scale=2,
upscaler=scaler,
sha256='7760aa96e4ee77e29d4f89c3a4486200042e019461fdb8aa286f49aa00b89b51',
),
UpscalerData(
name="DAT x3",
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x3.pth",
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x3.pth",
scale=3,
upscaler=scaler,
sha256='581973e02c06f90d4eb90acf743ec9604f56f3c2c6f9e1e2c2b38ded1f80d197',
),
UpscalerData(
name="DAT x4",
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x4.pth",
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x4.pth",
scale=4,
upscaler=scaler,
sha256='391a6ce69899dff5ea3214557e9d585608254579217169faf3d4c353caff049e',
),
]

View File

@ -23,7 +23,7 @@ def run_pnginfo(image):
info = ''
for key, text in items.items():
info += f"""
<div>
<div class="infotext">
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>

View File

@ -1,7 +1,7 @@
import hashlib
import os.path
from modules import shared
from modules import shared, errors
import modules.cache
dump_cache = modules.cache.dump_cache
@ -32,7 +32,7 @@ def sha256_from_cache(filename, title, use_addnet_hash=False):
cached_sha256 = hashes[title].get("sha256", None)
cached_mtime = hashes[title].get("mtime", 0)
if ondisk_mtime > cached_mtime or cached_sha256 is None:
if ondisk_mtime != cached_mtime or cached_sha256 is None:
return None
return cached_sha256
@ -82,3 +82,31 @@ def addnet_hash_safetensors(b):
return hash_sha256.hexdigest()
def partial_hash_from_cache(filename, *, ignore_cache: bool = False, digits: int = 8):
"""old hash that only looks at a small part of the file and is prone to collisions
kept for compatibility, don't use this for new things
"""
try:
filename = str(filename)
mtime = os.path.getmtime(filename)
hashes = cache('partial-hash')
cache_entry = hashes.get(filename, {})
cache_mtime = cache_entry.get("mtime", 0)
cache_hash = cache_entry.get("hash", None)
if mtime == cache_mtime and cache_hash and not ignore_cache:
return cache_hash[0:digits]
with open(filename, 'rb') as file:
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
partial_hash = m.hexdigest()
hashes[filename] = {'mtime': mtime, 'hash': partial_hash}
return partial_hash[0:digits]
except FileNotFoundError:
pass
except Exception:
errors.report(f'Error calculating partial hash for {filename}', exc_info=True)
return 'NOFILE'

View File

@ -409,6 +409,7 @@ class FilenameGenerator:
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if (self.p.n_iter == 1 and self.p.batch_size == 1) or self.zip else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
'randn_source': lambda self: opts.data["randn_source"],
'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
'user': lambda self: self.p.user,
'vae_filename': lambda self: self.get_vae_filename(),

View File

@ -43,9 +43,7 @@ def check_python_version():
supported_minors = [7, 8, 9, 10, 11]
if not (major == 3 and minor in supported_minors):
import modules.errors
modules.errors.print_error_explanation(f"""
errors.print_error_explanation(f"""
INCOMPATIBLE PYTHON VERSION
This program is tested with 3.10.6 Python, but you have {major}.{minor}.{micro}.
@ -315,9 +313,43 @@ def requirements_met(requirements_file):
return True
def get_cuda_comp_cap():
"""
Returns float of CUDA Compute Capability using nvidia-smi
Returns 0.0 on error
CUDA Compute Capability
ref https://developer.nvidia.com/cuda-gpus
ref https://en.wikipedia.org/wiki/CUDA
Blackwell consumer GPUs should return 12.0 data-center GPUs should return 10.0
"""
try:
return max(map(float, subprocess.check_output(['nvidia-smi', '--query-gpu=compute_cap', '--format=noheader,csv'], text=True).splitlines()))
except Exception as _:
return 0.0
def early_access_blackwell_wheels():
"""For Blackwell GPUs, use Early Access PyTorch Wheels provided by Nvidia"""
print('deprecated early_access_blackwell_wheels')
if all([
os.environ.get('TORCH_INDEX_URL') is None,
sys.version_info.major == 3,
sys.version_info.minor in (10, 11, 12),
platform.system() == "Windows",
get_cuda_comp_cap() >= 10, # Blackwell
]):
base_repo = 'https://huggingface.co/w-e-w/torch-2.6.0-cu128.nv/resolve/main/'
ea_whl = {
10: f'{base_repo}torch-2.6.0+cu128.nv-cp310-cp310-win_amd64.whl#sha256=fef3de7ce8f4642e405576008f384304ad0e44f7b06cc1aa45e0ab4b6e70490d {base_repo}torchvision-0.20.0a0+cu128.nv-cp310-cp310-win_amd64.whl#sha256=50841254f59f1db750e7348b90a8f4cd6befec217ab53cbb03780490b225abef',
11: f'{base_repo}torch-2.6.0+cu128.nv-cp311-cp311-win_amd64.whl#sha256=6665c36e6a7e79e7a2cb42bec190d376be9ca2859732ed29dd5b7b5a612d0d26 {base_repo}torchvision-0.20.0a0+cu128.nv-cp311-cp311-win_amd64.whl#sha256=bbc0ee4938e35fe5a30de3613bfcd2d8ef4eae334cf8d49db860668f0bb47083',
12: f'{base_repo}torch-2.6.0+cu128.nv-cp312-cp312-win_amd64.whl#sha256=a3197f72379d34b08c4a4bcf49ea262544a484e8702b8c46cbcd66356c89def6 {base_repo}torchvision-0.20.0a0+cu128.nv-cp312-cp312-win_amd64.whl#sha256=235e7be71ac4e75b0f8e817bae4796d7bac8a67146d2037ab96394f2bdc63e6c'
}
return f'pip install {ea_whl.get(sys.version_info.minor)}'
def prepare_environment():
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu121")
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.1.2 torchvision==0.16.2 --extra-index-url {torch_index_url}")
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu128")
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.7.0 torchvision==0.22.0 --extra-index-url {torch_index_url}")
if args.use_ipex:
if platform.system() == "Windows":
# The "Nuullll/intel-extension-for-pytorch" wheels were built from IPEX source for Intel Arc GPU: https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main
@ -341,7 +373,7 @@ def prepare_environment():
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
requirements_file_for_npu = os.environ.get('REQS_FILE_FOR_NPU', "requirements_npu.txt")
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.23.post1')
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.30')
clip_package = os.environ.get('CLIP_PACKAGE', "https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")

View File

@ -10,6 +10,7 @@ import torch
from modules import shared
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
from modules.util import load_file_from_url # noqa, backwards compatibility
if TYPE_CHECKING:
import spandrel
@ -17,30 +18,6 @@ if TYPE_CHECKING:
logger = logging.getLogger(__name__)
def load_file_from_url(
url: str,
*,
model_dir: str,
progress: bool = True,
file_name: str | None = None,
hash_prefix: str | None = None,
) -> str:
"""Download a file from `url` into `model_dir`, using the file present if possible.
Returns the path to the downloaded file.
"""
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
from torch.hub import download_url_to_file
download_url_to_file(url, cached_file, progress=progress, hash_prefix=hash_prefix)
return cached_file
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None, hash_prefix=None) -> list:
"""
A one-and done loader to try finding the desired models in specified directories.

View File

@ -24,7 +24,7 @@ class SafetensorsMapping(typing.Mapping):
return self.file.get_tensor(key)
CLIPL_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors"
CLIPL_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors"
CLIPL_CONFIG = {
"hidden_act": "quick_gelu",
"hidden_size": 768,
@ -33,7 +33,7 @@ CLIPL_CONFIG = {
"num_hidden_layers": 12,
}
CLIPG_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors"
CLIPG_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors"
CLIPG_CONFIG = {
"hidden_act": "gelu",
"hidden_size": 1280,
@ -43,7 +43,7 @@ CLIPG_CONFIG = {
"textual_inversion_key": "clip_g",
}
T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
T5_URL = f"{shared.hf_endpoint}/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
T5_CONFIG = {
"d_ff": 10240,
"d_model": 4096,

View File

@ -1259,7 +1259,10 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if self.hr_checkpoint_info is None:
raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')
self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
if shared.sd_model.sd_checkpoint_info == self.hr_checkpoint_info:
self.hr_checkpoint_info = None
else:
self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name

View File

@ -13,6 +13,7 @@ class ScriptPostprocessingForMainUI(scripts.Script):
return scripts.AlwaysVisible
def ui(self, is_img2img):
self.script.tab_name = '_img2img' if is_img2img else '_txt2img'
self.postprocessing_controls = self.script.ui()
return self.postprocessing_controls.values()
@ -33,7 +34,7 @@ def create_auto_preprocessing_script_data():
for name in shared.opts.postprocessing_enable_in_main_ui:
script = next(iter([x for x in scripts.postprocessing_scripts_data if x.script_class.name == name]), None)
if script is None:
if script is None or script.script_class.extra_only:
continue
constructor = lambda s=script: ScriptPostprocessingForMainUI(s.script_class())

View File

@ -1,3 +1,4 @@
import re
import dataclasses
import os
import gradio as gr
@ -59,6 +60,10 @@ class ScriptPostprocessing:
args_from = None
args_to = None
# define if the script should be used only in extras or main UI
extra_only = None
main_ui_only = None
order = 1000
"""scripts will be ordred by this value in postprocessing UI"""
@ -97,6 +102,31 @@ class ScriptPostprocessing:
def image_changed(self):
pass
tab_name = '' # used by ScriptPostprocessingForMainUI
replace_pattern = re.compile(r'\s')
rm_pattern = re.compile(r'[^a-z_0-9]')
def elem_id(self, item_id):
"""
Helper function to generate id for a HTML element
constructs final id out of script name and user-supplied item_id
'script_extras_{self.name.lower()}_{item_id}'
{tab_name} will append to the end of the id if set
tab_name will be set to '_img2img' or '_txt2img' if use by ScriptPostprocessingForMainUI
Extensions should use this function to generate element IDs
"""
return self.elem_id_suffix(f'extras_{self.name.lower()}_{item_id}')
def elem_id_suffix(self, base_id):
"""
Append tab_name to the base_id
Extensions that already have specific there element IDs and wish to keep their IDs the same when possible should use this function
"""
base_id = self.rm_pattern.sub('', self.replace_pattern.sub('_', base_id))
return f'{base_id}{self.tab_name}'
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
@ -119,10 +149,6 @@ class ScriptPostprocessingRunner:
for script_data in scripts_data:
script: ScriptPostprocessing = script_data.script_class()
script.filename = script_data.path
if script.name == "Simple Upscale":
continue
self.scripts.append(script)
def create_script_ui(self, script, inputs):
@ -152,7 +178,7 @@ class ScriptPostprocessingRunner:
return len(self.scripts)
filtered_scripts = [script for script in self.scripts if script.name not in scripts_filter_out]
filtered_scripts = [script for script in self.scripts if script.name not in scripts_filter_out and not script.main_ui_only]
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(filtered_scripts)}
return sorted(filtered_scripts, key=lambda x: script_scores[x.name])

View File

@ -76,7 +76,7 @@ class DisableInitialization(ReplaceHelper):
def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
# this file is always 404, prevent making request
if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
if url == f'{shared.hf_endpoint}/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
return None
try:

View File

@ -13,6 +13,7 @@ from urllib import request
import ldm.modules.midas as midas
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack, patches
from modules.hashes import partial_hash_from_cache as model_hash # noqa: F401 for backwards compatibility
from modules.timer import Timer
from modules.shared import opts
import tomesd
@ -87,7 +88,7 @@ class CheckpointInfo:
self.name = name
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
self.hash = model_hash(filename)
self.hash = hashes.partial_hash_from_cache(filename)
self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
self.shorthash = self.sha256[0:10] if self.sha256 else None
@ -159,7 +160,7 @@ def list_models():
model_url = None
expected_sha256 = None
else:
model_url = f"{shared.hf_endpoint}/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
model_url = f"{shared.hf_endpoint}/stable-diffusion-v1-5/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
expected_sha256 = '6ce0161689b3853acaa03779ec93eafe75a02f4ced659bee03f50797806fa2fa'
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"], hash_prefix=expected_sha256)
@ -200,21 +201,6 @@ def get_closet_checkpoint_match(search_string):
return None
def model_hash(filename):
"""old hash that only looks at a small part of the file and is prone to collisions"""
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
def select_checkpoint():
"""Raises `FileNotFoundError` if no checkpoints are found."""
model_checkpoint = shared.opts.sd_model_checkpoint
@ -423,6 +409,10 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
set_model_type(model, state_dict)
set_model_fields(model)
if 'ztsnr' in state_dict:
model.ztsnr = True
else:
model.ztsnr = False
if model.is_sdxl:
sd_models_xl.extend_sdxl(model)
@ -661,7 +651,7 @@ def apply_alpha_schedule_override(sd_model, p=None):
p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
sd_model.alphas_cumprod = sd_model.alphas_cumprod.half().to(shared.device)
if opts.sd_noise_schedule == "Zero Terminal SNR":
if opts.sd_noise_schedule == "Zero Terminal SNR" or (hasattr(sd_model, 'ztsnr') and sd_model.ztsnr):
if p is not None:
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(sd_model.alphas_cumprod).to(shared.device)
@ -783,7 +773,7 @@ def get_obj_from_str(string, reload=False):
return getattr(importlib.import_module(module, package=None), cls)
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
def load_model(checkpoint_info=None, already_loaded_state_dict=None, checkpoint_config=None):
from modules import sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
@ -801,7 +791,8 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
else:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
if not checkpoint_config:
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict)
timer.record("find config")
@ -974,7 +965,7 @@ def reload_model_weights(sd_model=None, info=None, forced_reload=False):
if sd_model is not None:
send_model_to_trash(sd_model)
load_model(checkpoint_info, already_loaded_state_dict=state_dict)
load_model(checkpoint_info, already_loaded_state_dict=state_dict, checkpoint_config=checkpoint_config)
return model_data.sd_model
try:

View File

@ -14,6 +14,7 @@ config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
config_sdxlv = os.path.join(sd_configs_path, "sd_xl_v.yaml")
config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
@ -81,6 +82,9 @@ def guess_model_config_from_state_dict(sd, filename):
if diffusion_model_input.shape[1] == 9:
return config_sdxl_inpainting
else:
if ('v_pred' in sd):
del sd['v_pred']
return config_sdxlv
return config_sdxl
if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:

View File

@ -117,12 +117,15 @@ def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
def beta_scheduler(n, sigma_min, sigma_max, inner_model, device):
# From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024) """
# From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)
alpha = shared.opts.beta_dist_alpha
beta = shared.opts.beta_dist_beta
timesteps = 1 - np.linspace(0, 1, n)
timesteps = [stats.beta.ppf(x, alpha, beta) for x in timesteps]
sigmas = [sigma_min + (x * (sigma_max-sigma_min)) for x in timesteps]
curve = [stats.beta.ppf(x, alpha, beta) for x in np.linspace(1, 0, n)]
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
timesteps = [end + x * (start - end) for x in curve]
sigmas = [inner_model.t_to_sigma(ts) for ts in timesteps]
sigmas += [0.0]
return torch.FloatTensor(sigmas).to(device)

View File

@ -16,10 +16,12 @@ def dat_models_names():
return [x.name for x in modules.dat_model.get_dat_models(None)]
def postprocessing_scripts():
def postprocessing_scripts(filter_out_extra_only=False, filter_out_main_ui_only=False):
import modules.scripts
return modules.scripts.scripts_postproc.scripts
return list(filter(
lambda s: (not filter_out_extra_only or not s.extra_only) and (not filter_out_main_ui_only or not s.main_ui_only),
modules.scripts.scripts_postproc.scripts,
))
def sd_vae_items():
@ -123,7 +125,7 @@ def ui_reorder_categories():
def callbacks_order_settings():
options = {
"sd_vae_explanation": OptionHTML("""
"callbacks_order_explanation": OptionHTML("""
For categories below, callbacks added to dropdowns happen before others, in order listed.
"""),

View File

@ -33,12 +33,12 @@ categories.register_category("training", "Training")
options_templates.update(options_section(('saving-images', "Saving images/grids", "saving"), {
"samples_save": OptionInfo(True, "Always save all generated images"),
"samples_format": OptionInfo('png', 'File format for images'),
"samples_format": OptionInfo('png', 'File format for images', ui_components.DropdownEditable, {"choices": ("png", "jpg", "jpeg", "webp", "avif")}).info("manual input of <a href='https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html' target='_blank'>other formats</a> is possible, but compatibility is not guaranteed"),
"samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
"save_images_replace_action": OptionInfo("Replace", "Saving the image to an existing file", gr.Radio, {"choices": ["Replace", "Add number suffix"], **hide_dirs}),
"grid_save": OptionInfo(True, "Always save all generated image grids"),
"grid_format": OptionInfo('png', 'File format for grids'),
"grid_format": OptionInfo('png', 'File format for grids', ui_components.DropdownEditable, {"choices": ("png", "jpg", "jpeg", "webp", "avif")}).info("manual input of <a href='https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html' target='_blank'>other formats</a> is possible, but compatibility is not guaranteed"),
"grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
@ -128,6 +128,7 @@ options_templates.update(options_section(('system', "System", "system"), {
"disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
"hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
"dump_stacks_on_signal": OptionInfo(False, "Print stack traces before exiting the program with ctrl+c."),
"concurrent_git_fetch_limit": OptionInfo(16, "Number of simultaneous extension update checks ", gr.Slider, {"step": 1, "minimum": 1, "maximum": 100}).info("reduce extension update check time"),
}))
options_templates.update(options_section(('profiler', "Profiler", "system"), {
@ -231,7 +232,7 @@ options_templates.update(options_section(('img2img', "img2img", "sd"), {
options_templates.update(options_section(('optimizations', "Optimizations", "sd"), {
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}, infotext='NGMS').link("PR", "https://github.com/AUTOMATIC1111/stablediffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}, infotext='NGMS').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
"s_min_uncond_all": OptionInfo(False, "Negative Guidance minimum sigma all steps", infotext='NGMS all steps').info("By default, NGMS above skips every other step; this makes it skip all steps"),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
@ -291,6 +292,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks", "s
"textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
"textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *shared.hypernetworks]}, refresh=shared_items.reload_hypernetworks),
"textual_inversion_image_embedding_data_cache": OptionInfo(False, 'Cache the data of image embeddings').info('potentially increase TI load time at the cost some disk space'),
}))
options_templates.update(options_section(('ui_prompt_editing', "Prompt editing", "ui"), {
@ -404,15 +406,15 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models"),
'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling"),
'beta_dist_alpha': OptionInfo(0.6, "Beta scheduler - alpha", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler alpha').info('Default = 0.6; the alpha parameter of the beta distribution used in Beta sampling'),
'beta_dist_beta': OptionInfo(0.6, "Beta scheduler - beta", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler beta').info('Default = 0.6; the beta parameter of the beta distribution used in Beta sampling'),
'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling; XYZ plot: Skip Early CFG"),
'beta_dist_alpha': OptionInfo(0.6, "Beta scheduler - alpha", gr.Slider, {"minimum": 0.01, "maximum": 5.0, "step": 0.01}, infotext='Beta scheduler alpha').info('Default = 0.6; the alpha parameter of the beta distribution used in Beta sampling'),
'beta_dist_beta': OptionInfo(0.6, "Beta scheduler - beta", gr.Slider, {"minimum": 0.01, "maximum": 5.0, "step": 0.01}, infotext='Beta scheduler beta').info('Default = 0.6; the beta parameter of the beta distribution used in Beta sampling'),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_disable_in_extras': OptionInfo([], "Disable postprocessing operations in extras tab", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts(filter_out_extra_only=True)]}),
'postprocessing_disable_in_extras': OptionInfo([], "Disable postprocessing operations in extras tab", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts(filter_out_main_ui_only=True)]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts(filter_out_main_ui_only=True)]}),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
'postprocessing_existing_caption_action': OptionInfo("Ignore", "Action for existing captions", gr.Radio, {"choices": ["Ignore", "Keep", "Prepend", "Append"]}).info("when generating captions using postprocessing; Ignore = use generated; Keep = use original; Prepend/Append = combine both"),
}))

View File

@ -12,7 +12,7 @@ import safetensors.torch
import numpy as np
from PIL import Image, PngImagePlugin
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes, cache
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@ -116,6 +116,7 @@ class EmbeddingDatabase:
self.expected_shape = -1
self.embedding_dirs = {}
self.previously_displayed_embeddings = ()
self.image_embedding_cache = cache.cache('image-embedding')
def add_embedding_dir(self, path):
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
@ -154,6 +155,31 @@ class EmbeddingDatabase:
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
return vec.shape[1]
def read_embedding_from_image(self, path, name):
try:
ondisk_mtime = os.path.getmtime(path)
if (cache_embedding := self.image_embedding_cache.get(path)) and ondisk_mtime == cache_embedding.get('mtime', 0):
# cache will only be used if the file has not been modified time matches
return cache_embedding.get('data', None), cache_embedding.get('name', None)
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
elif data := extract_image_data_embed(embed_image):
name = data.get('name', name)
if data is None or shared.opts.textual_inversion_image_embedding_data_cache:
# data of image embeddings only will be cached if the option textual_inversion_image_embedding_data_cache is enabled
# results of images that are not embeddings will allways be cached to reduce unnecessary future disk reads
self.image_embedding_cache[path] = {'data': data, 'name': None if data is None else name, 'mtime': ondisk_mtime}
return data, name
except Exception:
errors.report(f"Error loading embedding {path}", exc_info=True)
return None, None
def load_from_file(self, path, filename):
name, ext = os.path.splitext(filename)
ext = ext.upper()
@ -163,17 +189,10 @@ class EmbeddingDatabase:
if second_ext.upper() == '.PREVIEW':
return
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
if data:
name = data.get('name', name)
else:
# if data is None, means this is not an embedding, just a preview image
return
data, name = self.read_embedding_from_image(path, name)
if data is None:
return
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
elif ext in ['.SAFETENSORS']:
@ -191,7 +210,6 @@ class EmbeddingDatabase:
else:
print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.")
def load_from_dir(self, embdir):
if not os.path.isdir(embdir.path):
return

View File

@ -44,6 +44,9 @@ mimetypes.add_type('application/javascript', '.mjs')
mimetypes.add_type('image/webp', '.webp')
mimetypes.add_type('image/avif', '.avif')
# override potentially incorrect mimetypes
mimetypes.add_type('text/css', '.css')
if not cmd_opts.share and not cmd_opts.listen:
# fix gradio phoning home
gradio.utils.version_check = lambda: None

View File

@ -91,6 +91,7 @@ class InputAccordion(gr.Checkbox):
Actually just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox.
"""
accordion_id_set = set()
global_index = 0
def __init__(self, value, **kwargs):
@ -99,6 +100,18 @@ class InputAccordion(gr.Checkbox):
self.accordion_id = f"input-accordion-{InputAccordion.global_index}"
InputAccordion.global_index += 1
if not InputAccordion.accordion_id_set:
from modules import script_callbacks
script_callbacks.on_script_unloaded(InputAccordion.reset)
if self.accordion_id in InputAccordion.accordion_id_set:
count = 1
while (unique_id := f'{self.accordion_id}-{count}') in InputAccordion.accordion_id_set:
count += 1
self.accordion_id = unique_id
InputAccordion.accordion_id_set.add(self.accordion_id)
kwargs_checkbox = {
**kwargs,
"elem_id": f"{self.accordion_id}-checkbox",
@ -143,3 +156,7 @@ class InputAccordion(gr.Checkbox):
def get_block_name(self):
return "checkbox"
@classmethod
def reset(cls):
cls.global_index = 0
cls.accordion_id_set.clear()

View File

@ -1,5 +1,6 @@
import json
import os
from concurrent.futures import ThreadPoolExecutor
import threading
import time
from datetime import datetime, timezone
@ -106,18 +107,24 @@ def check_updates(id_task, disable_list):
exts = [ext for ext in extensions.extensions if ext.remote is not None and ext.name not in disabled]
shared.state.job_count = len(exts)
for ext in exts:
shared.state.textinfo = ext.name
lock = threading.Lock()
def _check_update(ext):
try:
ext.check_updates()
except FileNotFoundError as e:
if 'FETCH_HEAD' not in str(e):
raise
except Exception:
errors.report(f"Error checking updates for {ext.name}", exc_info=True)
with lock:
errors.report(f"Error checking updates for {ext.name}", exc_info=True)
with lock:
shared.state.textinfo = ext.name
shared.state.nextjob()
shared.state.nextjob()
with ThreadPoolExecutor(max_workers=max(1, int(shared.opts.concurrent_git_fetch_limit))) as executor:
for ext in exts:
executor.submit(_check_update, ext)
return extension_table(), ""

View File

@ -177,10 +177,8 @@ def add_pages_to_demo(app):
app.add_api_route("/sd_extra_networks/get-single-card", get_single_card, methods=["GET"])
def quote_js(s):
s = s.replace('\\', '\\\\')
s = s.replace('"', '\\"')
return f'"{s}"'
def quote_js(s: str):
return json.dumps(s, ensure_ascii=False)
class ExtraNetworksPage:

View File

@ -176,7 +176,7 @@ class UiLoadsave:
if new_value == old_value:
continue
if old_value is None and new_value == '' or new_value == []:
if old_value is None and (new_value == '' or new_value == []):
continue
yield path, old_value, new_value

View File

@ -93,13 +93,14 @@ class UpscalerData:
scaler: Upscaler = None
model: None
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None):
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None, sha256: str = None):
self.name = name
self.data_path = path
self.local_data_path = path
self.scaler = upscaler
self.scale = scale
self.model = model
self.sha256 = sha256
def __repr__(self):
return f"<UpscalerData name={self.name} path={self.data_path} scale={self.scale}>"

View File

@ -1,3 +1,4 @@
from __future__ import annotations
import os
import re
@ -211,3 +212,80 @@ Requested path was: {path}
subprocess.Popen(["explorer.exe", subprocess.check_output(["wslpath", "-w", path])])
else:
subprocess.Popen(["xdg-open", path])
def load_file_from_url(
url: str,
*,
model_dir: str,
progress: bool = True,
file_name: str | None = None,
hash_prefix: str | None = None,
re_download: bool = False,
) -> str:
"""Download a file from `url` into `model_dir`, using the file present if possible.
Returns the path to the downloaded file.
file_name: if specified, it will be used as the filename, otherwise the filename will be extracted from the url.
file is downloaded to {file_name}.tmp then moved to the final location after download is complete.
hash_prefix: sha256 hex string, if provided, the hash of the downloaded file will be checked against this prefix.
if the hash does not match, the temporary file is deleted and a ValueError is raised.
re_download: forcibly re-download the file even if it already exists.
"""
from urllib.parse import urlparse
import requests
try:
from tqdm import tqdm
except ImportError:
class tqdm:
def __init__(self, *args, **kwargs):
pass
def update(self, n=1, *args, **kwargs):
pass
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if re_download or not os.path.exists(cached_file):
os.makedirs(model_dir, exist_ok=True)
temp_file = os.path.join(model_dir, f"{file_name}.tmp")
print(f'\nDownloading: "{url}" to {cached_file}')
response = requests.get(url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
with tqdm(total=total_size, unit='B', unit_scale=True, desc=file_name, disable=not progress) as progress_bar:
with open(temp_file, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
file.write(chunk)
progress_bar.update(len(chunk))
if hash_prefix and not compare_sha256(temp_file, hash_prefix):
print(f"Hash mismatch for {temp_file}. Deleting the temporary file.")
os.remove(temp_file)
raise ValueError(f"File hash does not match the expected hash prefix {hash_prefix}!")
os.rename(temp_file, cached_file)
return cached_file
def compare_sha256(file_path: str, hash_prefix: str) -> bool:
"""Check if the SHA256 hash of the file matches the given prefix."""
import hashlib
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest().startswith(hash_prefix.strip().lower())

49
modules/uv_hook.py Normal file
View File

@ -0,0 +1,49 @@
import sys
import copy
import shlex
import subprocess
from functools import wraps
BAD_FLAGS = ("--prefer-binary", '-I', '--ignore-installed')
def patch():
if hasattr(subprocess, "__original_run"):
return
print("using uv")
try:
subprocess.run(['uv', '-V'])
except FileNotFoundError:
subprocess.run([sys.executable, '-m', 'pip', 'install', 'uv'])
subprocess.__original_run = subprocess.run
@wraps(subprocess.__original_run)
def patched_run(*args, **kwargs):
_kwargs = copy.copy(kwargs)
if args:
command, *_args = args
else:
command, _args = _kwargs.pop("args", ""), ()
if isinstance(command, str):
command = shlex.split(command)
else:
command = [arg.strip() for arg in command]
if not isinstance(command, list) or "pip" not in command:
return subprocess.__original_run(*args, **kwargs)
cmd = command[command.index("pip") + 1:]
cmd = [arg for arg in cmd if arg not in BAD_FLAGS]
modified_command = ["uv", "pip", *cmd]
result = subprocess.__original_run([*modified_command, *_args], **_kwargs)
if result.returncode != 0:
return subprocess.__original_run(*args, **kwargs)
return result
subprocess.run = patched_run

View File

@ -22,7 +22,7 @@ protobuf==3.20.0
psutil==5.9.5
pytorch_lightning==1.9.4
resize-right==0.0.2
safetensors==0.4.2
safetensors==0.4.5
scikit-image==0.21.0
spandrel==0.3.4
spandrel-extra-arches==0.1.1

View File

@ -182,7 +182,7 @@ document.addEventListener('keydown', function(e) {
const lightboxModal = document.querySelector('#lightboxModal');
if (!globalPopup || globalPopup.style.display === 'none') {
if (document.activeElement === lightboxModal) return;
if (interruptButton.style.display === 'block') {
if (interruptButton?.style.display === 'block') {
interruptButton.click();
e.preventDefault();
}

View File

@ -12,8 +12,8 @@ class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing
def ui(self):
with ui_components.InputAccordion(False, label="CodeFormer") as enable:
with gr.Row():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id=self.elem_id_suffix("extras_codeformer_visibility"))
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id=self.elem_id_suffix("extras_codeformer_weight"))
return {
"enable": enable,
@ -29,6 +29,10 @@ class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
if pp.image.size != res.size:
res = res.resize(pp.image.size)
if pp.image.mode != res.mode:
res = res.convert(pp.image.mode)
res = Image.blend(pp.image, res, codeformer_visibility)
pp.image = res

View File

@ -11,7 +11,7 @@ class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
def ui(self):
with ui_components.InputAccordion(False, label="GFPGAN") as enable:
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_gfpgan_visibility")
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id=self.elem_id_suffix("extras_gfpgan_visibility"))
return {
"enable": enable,
@ -26,6 +26,10 @@ class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
if pp.image.size != res.size:
res = res.resize(pp.image.size)
if pp.image.mode != res.mode:
res = res.convert(pp.image.mode)
res = Image.blend(pp.image, res, gfpgan_visibility)
pp.image = res

View File

@ -30,31 +30,31 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
def ui(self):
selected_tab = gr.Number(value=0, visible=False)
with InputAccordion(True, label="Upscale", elem_id="extras_upscale") as upscale_enabled:
with InputAccordion(True, label="Upscale", elem_id=self.elem_id_suffix("extras_upscale")) as upscale_enabled:
with FormRow():
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id=self.elem_id_suffix("extras_upscaler_1"), choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
with FormRow():
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id=self.elem_id_suffix("extras_upscaler_2"), choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id=self.elem_id_suffix("extras_upscaler_2_visibility"))
with FormRow():
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
with gr.Tabs(elem_id=self.elem_id_suffix("extras_resize_mode")):
with gr.TabItem('Scale by', elem_id=self.elem_id_suffix("extras_scale_by_tab")) as tab_scale_by:
with gr.Row():
with gr.Column(scale=4):
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id=self.elem_id_suffix("extras_upscaling_resize"))
with gr.Column(scale=1, min_width=160):
max_side_length = gr.Number(label="Max side length", value=0, elem_id="extras_upscale_max_side_length", tooltip="If any of two sides of the image ends up larger than specified, will downscale it to fit. 0 = no limit.", min_width=160, step=8, minimum=0)
max_side_length = gr.Number(label="Max side length", value=0, elem_id=self.elem_id_suffix("extras_upscale_max_side_length"), tooltip="If any of two sides of the image ends up larger than specified, will downscale it to fit. 0 = no limit.", min_width=160, step=8, minimum=0)
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
with gr.TabItem('Scale to', elem_id=self.elem_id_suffix("extras_scale_to_tab")) as tab_scale_to:
with FormRow():
with gr.Column(elem_id="upscaling_column_size", scale=4):
upscaling_resize_w = gr.Slider(minimum=64, maximum=8192, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Slider(minimum=64, maximum=8192, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h")
with gr.Column(elem_id="upscaling_dimensions_row", scale=1, elem_classes="dimensions-tools"):
upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn", tooltip="Switch width/height")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with gr.Column(elem_id=self.elem_id_suffix("upscaling_column_size"), scale=4):
upscaling_resize_w = gr.Slider(minimum=64, maximum=8192, step=8, label="Width", value=512, elem_id=self.elem_id_suffix("extras_upscaling_resize_w"))
upscaling_resize_h = gr.Slider(minimum=64, maximum=8192, step=8, label="Height", value=512, elem_id=self.elem_id_suffix("extras_upscaling_resize_h"))
with gr.Column(elem_id=self.elem_id_suffix("upscaling_dimensions_row"), scale=1, elem_classes="dimensions-tools"):
upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id=self.elem_id_suffix("upscaling_res_switch_btn"), tooltip="Switch width/height")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id=self.elem_id_suffix("extras_upscaling_crop"))
def on_selected_upscale_method(upscale_method):
if not shared.opts.set_scale_by_when_changing_upscaler:
@ -169,6 +169,7 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
name = "Simple Upscale"
order = 900
main_ui_only = True
def ui(self):
with FormRow():

View File

@ -20,7 +20,7 @@ import modules.sd_models
import modules.sd_vae
import re
from modules.ui_components import ToolButton
from modules.ui_components import ToolButton, InputAccordion
fill_values_symbol = "\U0001f4d2" # 📒
@ -259,6 +259,7 @@ axis_options = [
AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
AxisOption("Schedule rho", float, apply_override("rho")),
AxisOption("Skip Early CFG", float, apply_override('skip_early_cond')),
AxisOption("Beta schedule alpha", float, apply_override("beta_dist_alpha")),
AxisOption("Beta schedule beta", float, apply_override("beta_dist_beta")),
AxisOption("Eta", float, apply_field("eta")),
@ -284,7 +285,7 @@ axis_options = [
]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size):
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size, draw_grid):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
@ -369,29 +370,30 @@ def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, [])
z_count = len(zs)
if draw_grid:
z_count = len(zs)
for i in range(z_count):
start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
for i in range(z_count):
start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
if draw_legend:
grid_max_w, grid_max_h = map(max, zip(*(img.size for img in processed_result.images[start_index:end_index])))
grid = images.draw_grid_annotations(grid, grid_max_w, grid_max_h, hor_texts, ver_texts, margin_size)
processed_result.images.insert(i, grid)
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
z_sub_grid_max_w, z_sub_grid_max_h = map(max, zip(*(img.size for img in processed_result.images[:z_count])))
if draw_legend:
grid_max_w, grid_max_h = map(max, zip(*(img.size for img in processed_result.images[start_index:end_index])))
grid = images.draw_grid_annotations(grid, grid_max_w, grid_max_h, hor_texts, ver_texts, margin_size)
processed_result.images.insert(i, grid)
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
z_sub_grid_max_w, z_sub_grid_max_h = map(max, zip(*(img.size for img in processed_result.images[:z_count])))
if draw_legend:
z_grid = images.draw_grid_annotations(z_grid, z_sub_grid_max_w, z_sub_grid_max_h, title_texts, [[images.GridAnnotation()]])
processed_result.images.insert(0, z_grid)
# TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
# processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
# processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
processed_result.infotexts.insert(0, processed_result.infotexts[0])
z_grid = images.draw_grid_annotations(z_grid, z_sub_grid_max_w, z_sub_grid_max_h, title_texts, [[images.GridAnnotation()]])
processed_result.images.insert(0, z_grid)
# TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
# processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
# processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
processed_result.infotexts.insert(0, processed_result.infotexts[0])
return processed_result
@ -441,7 +443,6 @@ class Script(scripts.Script):
with gr.Row(variant="compact", elem_id="axis_options"):
with gr.Column():
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
with gr.Row():
vary_seeds_x = gr.Checkbox(label='Vary seeds for X', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_x"), tooltip="Use different seeds for images along X axis.")
@ -449,9 +450,12 @@ class Script(scripts.Script):
vary_seeds_z = gr.Checkbox(label='Vary seeds for Z', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_z"), tooltip="Use different seeds for images along Z axis.")
with gr.Column():
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False, elem_id=self.elem_id("csv_mode"))
with gr.Column():
with InputAccordion(True, label='Draw grid', elem_id=self.elem_id('draw_grid')) as draw_grid:
with gr.Row():
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
with gr.Row(variant="compact", elem_id="swap_axes"):
@ -533,9 +537,9 @@ class Script(scripts.Script):
(z_values_dropdown, lambda params: get_dropdown_update_from_params("Z", params)),
)
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode, draw_grid]
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode):
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode, draw_grid):
x_type, y_type, z_type = x_type or 0, y_type or 0, z_type or 0 # if axle type is None set to 0
if not no_fixed_seeds:
@ -780,7 +784,8 @@ class Script(scripts.Script):
include_sub_grids=include_sub_grids,
first_axes_processed=first_axes_processed,
second_axes_processed=second_axes_processed,
margin_size=margin_size
margin_size=margin_size,
draw_grid=draw_grid,
)
if not processed.images:
@ -789,14 +794,15 @@ class Script(scripts.Script):
z_count = len(zs)
# Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
processed.infotexts[:1 + z_count] = grid_infotext[:1 + z_count]
if draw_grid:
# Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
processed.infotexts[:1 + z_count] = grid_infotext[:1 + z_count]
if not include_lone_images:
# Don't need sub-images anymore, drop from list:
processed.images = processed.images[:z_count + 1]
processed.images = processed.images[:z_count + 1] if draw_grid else []
if opts.grid_save:
if draw_grid and opts.grid_save:
# Auto-save main and sub-grids:
grid_count = z_count + 1 if z_count > 1 else 1
for g in range(grid_count):
@ -806,7 +812,7 @@ class Script(scripts.Script):
if not include_sub_grids: # if not include_sub_grids then skip saving after the first grid
break
if not include_sub_grids:
if draw_grid and not include_sub_grids:
# Done with sub-grids, drop all related information:
for _ in range(z_count):
del processed.images[1]

View File

@ -480,8 +480,10 @@ div.toprow-compact-tools{
}
#settings_result{
height: 1.4em;
min-height: 1.4em;
margin: 0 1.2em;
max-height: calc(var(--text-md) * var(--line-sm) * 5);
overflow-y: auto;
}
table.popup-table{
@ -600,6 +602,7 @@ table.popup-table .link{
background: var(--background-fill-primary);
width: 100%;
height: 100%;
pointer-events: none;
}
.livePreview img{

View File

@ -4,7 +4,16 @@ if exist webui.settings.bat (
call webui.settings.bat
)
if not defined PYTHON (set PYTHON=python)
if not defined PYTHON (
for /f "delims=" %%A in ('where python ^| findstr /n . ^| findstr ^^1:') do (
if /i "%%~xA" == ".exe" (
set PYTHON=python
) else (
set PYTHON=call python
)
)
)
if defined GIT (set "GIT_PYTHON_GIT_EXECUTABLE=%GIT%")
if not defined VENV_DIR (set "VENV_DIR=%~dp0%venv")

View File

@ -66,12 +66,53 @@ def monitorar_comandos():
print(f"Unknown server command: {server_command}")
def warning_if_invalid_install_dir():
"""
Shows a warning if the webui is installed under a path that contains a leading dot in any of its parent directories.
Gradio '/file=' route will block access to files that have a leading dot in the path segments.
We use this route to serve files such as JavaScript and CSS to the webpage,
if those files are blocked, the webpage will not function properly.
See https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13292
This is a security feature was added to Gradio 3.32.0 and is removed in later versions,
this function replicates Gradio file access blocking logic.
This check should be removed when it's no longer applicable.
"""
from packaging.version import parse
from pathlib import Path
import gradio
if parse('3.32.0') <= parse(gradio.__version__) < parse('4'):
def abspath(path):
"""modified from Gradio 3.41.2 gradio.utils.abspath()"""
if path.is_absolute():
return path
is_symlink = path.is_symlink() or any(parent.is_symlink() for parent in path.parents)
return Path.cwd() / path if (is_symlink or path == path.resolve()) else path.resolve()
webui_root = Path(__file__).parent
if any(part.startswith(".") for part in abspath(webui_root).parts):
print(f'''{"!"*25} Warning {"!"*25}
WebUI is installed in a directory that has a leading dot (.) in one of its parent directories.
This will prevent WebUI from functioning properly.
Please move the installation to a different directory.
Current path: "{webui_root}"
For more information see: https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13292
{"!"*25} Warning {"!"*25}''')
def webui():
initialize.initialize()
from modules import shared, ui_tempdir, script_callbacks, ui, progress, ui_extra_networks
while True:
limpar_temp_dir()
warning_if_invalid_install_dir()
while True:
limpar_temp_dir()
script_callbacks.before_ui_callback()
startup_timer.record("scripts before_ui_callback")

View File

@ -127,7 +127,7 @@ then
fi
# Check prerequisites
gpu_info=$(lspci 2>/dev/null | grep -E "VGA|Display")
gpu_info=$(lspci 2>/dev/null | grep -E "VGA|Display|CMP")
case "$gpu_info" in
*"Navi 1"*)
export HSA_OVERRIDE_GFX_VERSION=10.3.0