mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-11 03:09:47 +00:00
Merge branch 'dev' into test-fp8
This commit is contained in:
@@ -3,3 +3,14 @@ import sys
|
||||
# this will break any attempt to import xformers which will prevent stability diffusion repo from trying to use it
|
||||
if "--xformers" not in "".join(sys.argv):
|
||||
sys.modules["xformers"] = None
|
||||
|
||||
# Hack to fix a changed import in torchvision 0.17+, which otherwise breaks
|
||||
# basicsr; see https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13985
|
||||
try:
|
||||
import torchvision.transforms.functional_tensor # noqa: F401
|
||||
except ImportError:
|
||||
try:
|
||||
import torchvision.transforms.functional as functional
|
||||
sys.modules["torchvision.transforms.functional_tensor"] = functional
|
||||
except ImportError:
|
||||
pass # shrug...
|
||||
|
@@ -6,6 +6,7 @@ import os
|
||||
import shutil
|
||||
import sys
|
||||
import importlib.util
|
||||
import importlib.metadata
|
||||
import platform
|
||||
import json
|
||||
from functools import lru_cache
|
||||
@@ -119,11 +120,16 @@ def run(command, desc=None, errdesc=None, custom_env=None, live: bool = default_
|
||||
|
||||
def is_installed(package):
|
||||
try:
|
||||
spec = importlib.util.find_spec(package)
|
||||
except ModuleNotFoundError:
|
||||
return False
|
||||
dist = importlib.metadata.distribution(package)
|
||||
except importlib.metadata.PackageNotFoundError:
|
||||
try:
|
||||
spec = importlib.util.find_spec(package)
|
||||
except ModuleNotFoundError:
|
||||
return False
|
||||
|
||||
return spec is not None
|
||||
return spec is not None
|
||||
|
||||
return dist is not None
|
||||
|
||||
|
||||
def repo_dir(name):
|
||||
|
@@ -24,10 +24,15 @@ from pytorch_lightning.utilities.distributed import rank_zero_only
|
||||
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
||||
from ldm.modules.ema import LitEma
|
||||
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
||||
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
||||
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
|
||||
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
try:
|
||||
from ldm.models.autoencoder import VQModelInterface
|
||||
except Exception:
|
||||
class VQModelInterface:
|
||||
pass
|
||||
|
||||
__conditioning_keys__ = {'concat': 'c_concat',
|
||||
'crossattn': 'c_crossattn',
|
||||
|
@@ -938,21 +938,20 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if opts.enable_pnginfo:
|
||||
image.info["parameters"] = text
|
||||
output_images.append(image)
|
||||
if save_samples and hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
|
||||
image_mask = p.mask_for_overlay.convert('RGB')
|
||||
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
||||
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
|
||||
if opts.return_mask or opts.save_mask:
|
||||
image_mask = p.mask_for_overlay.convert('RGB')
|
||||
if save_samples and opts.save_mask:
|
||||
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
|
||||
if opts.return_mask:
|
||||
output_images.append(image_mask)
|
||||
|
||||
if opts.save_mask:
|
||||
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
|
||||
|
||||
if opts.save_mask_composite:
|
||||
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
|
||||
|
||||
if opts.return_mask:
|
||||
output_images.append(image_mask)
|
||||
|
||||
if opts.return_mask_composite:
|
||||
output_images.append(image_mask_composite)
|
||||
if opts.return_mask_composite or opts.save_mask_composite:
|
||||
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
||||
if save_samples and opts.save_mask_composite:
|
||||
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
|
||||
if opts.return_mask_composite:
|
||||
output_images.append(image_mask_composite)
|
||||
|
||||
del x_samples_ddim
|
||||
|
||||
|
@@ -257,6 +257,7 @@ options_templates.update(options_section(('ui_prompt_editing', "Prompt editing",
|
||||
"keyedit_precision_attention": OptionInfo(0.1, "Precision for (attention:1.1) when editing the prompt with Ctrl+up/down", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
|
||||
"keyedit_precision_extra": OptionInfo(0.05, "Precision for <extra networks:0.9> when editing the prompt with Ctrl+up/down", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
|
||||
"keyedit_delimiters": OptionInfo(r".,\/!?%^*;:{}=`~() ", "Word delimiters when editing the prompt with Ctrl+up/down"),
|
||||
"keyedit_delimiters_whitespace": OptionInfo(["Tab", "Carriage Return", "Line Feed"], "Ctrl+up/down whitespace delimiters", gr.CheckboxGroup, lambda: {"choices": ["Tab", "Carriage Return", "Line Feed"]}),
|
||||
"disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
|
||||
}))
|
||||
|
||||
|
Reference in New Issue
Block a user