mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-08 05:12:35 +00:00
ESRGAN support
This commit is contained in:
134
modules/esrgan_model.py
Normal file
134
modules/esrgan_model.py
Normal file
@@ -0,0 +1,134 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
import modules.esrgam_model_arch as arch
|
||||
from modules import shared
|
||||
from modules.shared import opts
|
||||
import modules.images
|
||||
|
||||
|
||||
def load_model(filename):
|
||||
# this code is adapted from https://github.com/xinntao/ESRGAN
|
||||
|
||||
pretrained_net = torch.load(filename)
|
||||
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
||||
|
||||
if 'conv_first.weight' in pretrained_net:
|
||||
crt_model.load_state_dict(pretrained_net)
|
||||
return crt_model
|
||||
|
||||
crt_net = crt_model.state_dict()
|
||||
load_net_clean = {}
|
||||
for k, v in pretrained_net.items():
|
||||
if k.startswith('module.'):
|
||||
load_net_clean[k[7:]] = v
|
||||
else:
|
||||
load_net_clean[k] = v
|
||||
pretrained_net = load_net_clean
|
||||
|
||||
tbd = []
|
||||
for k, v in crt_net.items():
|
||||
tbd.append(k)
|
||||
|
||||
# directly copy
|
||||
for k, v in crt_net.items():
|
||||
if k in pretrained_net and pretrained_net[k].size() == v.size():
|
||||
crt_net[k] = pretrained_net[k]
|
||||
tbd.remove(k)
|
||||
|
||||
crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
|
||||
crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
|
||||
|
||||
for k in tbd.copy():
|
||||
if 'RDB' in k:
|
||||
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
|
||||
if '.weight' in k:
|
||||
ori_k = ori_k.replace('.weight', '.0.weight')
|
||||
elif '.bias' in k:
|
||||
ori_k = ori_k.replace('.bias', '.0.bias')
|
||||
crt_net[k] = pretrained_net[ori_k]
|
||||
tbd.remove(k)
|
||||
|
||||
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
|
||||
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
|
||||
crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
|
||||
crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
|
||||
crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
|
||||
crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
|
||||
crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
|
||||
crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
|
||||
crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
|
||||
crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
|
||||
|
||||
crt_model.load_state_dict(crt_net)
|
||||
crt_model.eval()
|
||||
return crt_model
|
||||
|
||||
def upscale_without_tiling(model, img):
|
||||
img = np.array(img)
|
||||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(shared.device)
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
output = 255. * np.moveaxis(output, 0, 2)
|
||||
output = output.astype(np.uint8)
|
||||
output = output[:, :, ::-1]
|
||||
return Image.fromarray(output, 'RGB')
|
||||
|
||||
|
||||
def esrgan_upscale(model, img):
|
||||
if opts.ESRGAN_tile == 0:
|
||||
return upscale_without_tiling(model, img)
|
||||
|
||||
grid = modules.images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
|
||||
newtiles = []
|
||||
scale_factor = 1
|
||||
|
||||
for y, h, row in grid.tiles:
|
||||
newrow = []
|
||||
for tiledata in row:
|
||||
x, w, tile = tiledata
|
||||
|
||||
output = upscale_without_tiling(model, tile)
|
||||
scale_factor = output.width // tile.width
|
||||
|
||||
newrow.append([x * scale_factor, w * scale_factor, output])
|
||||
newtiles.append([y * scale_factor, h * scale_factor, newrow])
|
||||
|
||||
newgrid = modules.images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
|
||||
output = modules.images.combine_grid(newgrid)
|
||||
return output
|
||||
|
||||
|
||||
class UpscalerESRGAN(modules.images.Upscaler):
|
||||
def __init__(self, filename, title):
|
||||
self.name = title
|
||||
self.model = load_model(filename)
|
||||
|
||||
def do_upscale(self, img):
|
||||
model = self.model.to(shared.device)
|
||||
img = esrgan_upscale(model, img)
|
||||
return img
|
||||
|
||||
|
||||
def load_models(dirname):
|
||||
for file in os.listdir(dirname):
|
||||
path = os.path.join(dirname, file)
|
||||
model_name, extension = os.path.splitext(file)
|
||||
|
||||
if extension != '.pt' and extension != '.pth':
|
||||
continue
|
||||
|
||||
try:
|
||||
modules.shared.sd_upscalers.append(UpscalerESRGAN(path, model_name))
|
||||
except Exception:
|
||||
print(f"Error loading ESRGAN model: {path}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
Reference in New Issue
Block a user