mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 03:10:21 +00:00
send weights to target device instead of CPU memory
This commit is contained in:
@@ -155,10 +155,16 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, state_dict, device):
|
||||
def __init__(self, state_dict, device, weight_dtype_conversion=None):
|
||||
super().__init__()
|
||||
self.state_dict = state_dict
|
||||
self.device = device
|
||||
self.weight_dtype_conversion = weight_dtype_conversion or {}
|
||||
self.default_dtype = self.weight_dtype_conversion.get('')
|
||||
|
||||
def get_weight_dtype(self, key):
|
||||
key_first_term, _ = key.split('.', 1)
|
||||
return self.weight_dtype_conversion.get(key_first_term, self.default_dtype)
|
||||
|
||||
def __enter__(self):
|
||||
if shared.cmd_opts.disable_model_loading_ram_optimization:
|
||||
@@ -167,24 +173,24 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
||||
sd = self.state_dict
|
||||
device = self.device
|
||||
|
||||
def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs):
|
||||
def load_from_state_dict(original, module, state_dict, prefix, *args, **kwargs):
|
||||
used_param_keys = []
|
||||
|
||||
for name, param in self._parameters.items():
|
||||
for name, param in module._parameters.items():
|
||||
if param is None:
|
||||
continue
|
||||
|
||||
key = prefix + name
|
||||
sd_param = sd.pop(key, None)
|
||||
if sd_param is not None:
|
||||
state_dict[key] = sd_param
|
||||
state_dict[key] = sd_param.to(dtype=self.get_weight_dtype(key))
|
||||
used_param_keys.append(key)
|
||||
|
||||
if param.is_meta:
|
||||
dtype = sd_param.dtype if sd_param is not None else param.dtype
|
||||
self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
|
||||
module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
|
||||
|
||||
for name in self._buffers:
|
||||
for name in module._buffers:
|
||||
key = prefix + name
|
||||
|
||||
sd_param = sd.pop(key, None)
|
||||
@@ -192,12 +198,12 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
||||
state_dict[key] = sd_param
|
||||
used_param_keys.append(key)
|
||||
|
||||
original(self, state_dict, prefix, *args, **kwargs)
|
||||
original(module, state_dict, prefix, *args, **kwargs)
|
||||
|
||||
for key in used_param_keys:
|
||||
state_dict.pop(key, None)
|
||||
|
||||
def load_state_dict(original, self, state_dict, strict=True):
|
||||
def load_state_dict(original, module, state_dict, strict=True):
|
||||
"""torch makes a lot of copies of the dictionary with weights, so just deleting entries from state_dict does not help
|
||||
because the same values are stored in multiple copies of the dict. The trick used here is to give torch a dict with
|
||||
all weights on meta device, i.e. deleted, and then it doesn't matter how many copies torch makes.
|
||||
@@ -212,7 +218,7 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
||||
if state_dict == sd:
|
||||
state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()}
|
||||
|
||||
original(self, state_dict, strict=strict)
|
||||
original(module, state_dict, strict=strict)
|
||||
|
||||
module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs))
|
||||
module_load_from_state_dict = self.replace(torch.nn.Module, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(module_load_from_state_dict, *args, **kwargs))
|
||||
|
Reference in New Issue
Block a user