mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-08 21:30:27 +00:00
Merge branch 'master' into 7flash/fix-api-compatibility
This commit is contained in:
@@ -2,14 +2,17 @@ import base64
|
||||
import io
|
||||
import time
|
||||
import uvicorn
|
||||
from gradio.processing_utils import decode_base64_to_file, decode_base64_to_image
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
from threading import Lock
|
||||
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
|
||||
from fastapi import APIRouter, Depends, FastAPI, HTTPException
|
||||
import modules.shared as shared
|
||||
from modules.api.models import *
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.sd_samplers import all_samplers, sample_to_image, samples_to_image_grid
|
||||
from modules.sd_samplers import all_samplers
|
||||
from modules.extras import run_extras, run_pnginfo
|
||||
|
||||
from modules.sd_models import checkpoints_list
|
||||
from modules.realesrgan_model import get_realesrgan_models
|
||||
from typing import List
|
||||
|
||||
def upscaler_to_index(name: str):
|
||||
try:
|
||||
@@ -37,7 +40,7 @@ def encode_pil_to_base64(image):
|
||||
|
||||
|
||||
class Api:
|
||||
def __init__(self, app, queue_lock):
|
||||
def __init__(self, app: FastAPI, queue_lock: Lock):
|
||||
self.router = APIRouter()
|
||||
self.app = app
|
||||
self.queue_lock = queue_lock
|
||||
@@ -48,6 +51,18 @@ class Api:
|
||||
self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
|
||||
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
|
||||
self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
|
||||
self.app.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
|
||||
self.app.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
||||
self.app.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
|
||||
self.app.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
|
||||
self.app.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
|
||||
self.app.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
|
||||
self.app.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
|
||||
self.app.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
|
||||
self.app.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
|
||||
self.app.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem])
|
||||
self.app.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
|
||||
self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||
@@ -190,6 +205,66 @@ class Api:
|
||||
shared.state.interrupt()
|
||||
|
||||
return {}
|
||||
|
||||
def get_config(self):
|
||||
options = {}
|
||||
for key in shared.opts.data.keys():
|
||||
metadata = shared.opts.data_labels.get(key)
|
||||
if(metadata is not None):
|
||||
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
|
||||
else:
|
||||
options.update({key: shared.opts.data.get(key, None)})
|
||||
|
||||
return options
|
||||
|
||||
def set_config(self, req: OptionsModel):
|
||||
reqDict = vars(req)
|
||||
for o in reqDict:
|
||||
setattr(shared.opts, o, reqDict[o])
|
||||
|
||||
shared.opts.save(shared.config_filename)
|
||||
return
|
||||
|
||||
def get_cmd_flags(self):
|
||||
return vars(shared.cmd_opts)
|
||||
|
||||
def get_samplers(self):
|
||||
return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers]
|
||||
|
||||
def get_upscalers(self):
|
||||
upscalers = []
|
||||
|
||||
for upscaler in shared.sd_upscalers:
|
||||
u = upscaler.scaler
|
||||
upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
|
||||
|
||||
return upscalers
|
||||
|
||||
def get_sd_models(self):
|
||||
return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": x.config} for x in checkpoints_list.values()]
|
||||
|
||||
def get_hypernetworks(self):
|
||||
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
|
||||
|
||||
def get_face_restorers(self):
|
||||
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
|
||||
|
||||
def get_realesrgan_models(self):
|
||||
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
|
||||
|
||||
def get_promp_styles(self):
|
||||
styleList = []
|
||||
for k in shared.prompt_styles.styles:
|
||||
style = shared.prompt_styles.styles[k]
|
||||
styleList.append({"name":style[0], "prompt": style[1], "negative_prompr": style[2]})
|
||||
|
||||
return styleList
|
||||
|
||||
def get_artists_categories(self):
|
||||
return shared.artist_db.cats
|
||||
|
||||
def get_artists(self):
|
||||
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
|
||||
|
||||
def launch(self, server_name, port):
|
||||
self.app.include_router(self.router)
|
||||
|
@@ -1,11 +1,10 @@
|
||||
import inspect
|
||||
from click import prompt
|
||||
from pydantic import BaseModel, Field, create_model
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Optional, Union
|
||||
from typing_extensions import Literal
|
||||
from inflection import underscore
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||
from modules.shared import sd_upscalers
|
||||
from modules.shared import sd_upscalers, opts, parser
|
||||
from typing import List
|
||||
|
||||
API_NOT_ALLOWED = [
|
||||
@@ -132,6 +131,7 @@ class ExtrasBaseRequest(BaseModel):
|
||||
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
|
||||
upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")
|
||||
|
||||
class ExtraBaseResponse(BaseModel):
|
||||
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
|
||||
@@ -166,3 +166,68 @@ class ProgressResponse(BaseModel):
|
||||
eta_relative: float = Field(title="ETA in secs")
|
||||
state: dict = Field(title="State", description="The current state snapshot")
|
||||
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
|
||||
|
||||
fields = {}
|
||||
for key, value in opts.data.items():
|
||||
metadata = opts.data_labels.get(key)
|
||||
optType = opts.typemap.get(type(value), type(value))
|
||||
|
||||
if (metadata is not None):
|
||||
fields.update({key: (Optional[optType], Field(
|
||||
default=metadata.default ,description=metadata.label))})
|
||||
else:
|
||||
fields.update({key: (Optional[optType], Field())})
|
||||
|
||||
OptionsModel = create_model("Options", **fields)
|
||||
|
||||
flags = {}
|
||||
_options = vars(parser)['_option_string_actions']
|
||||
for key in _options:
|
||||
if(_options[key].dest != 'help'):
|
||||
flag = _options[key]
|
||||
_type = str
|
||||
if(_options[key].default != None): _type = type(_options[key].default)
|
||||
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
|
||||
|
||||
FlagsModel = create_model("Flags", **flags)
|
||||
|
||||
class SamplerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
aliases: list[str] = Field(title="Aliases")
|
||||
options: dict[str, str] = Field(title="Options")
|
||||
|
||||
class UpscalerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
model_name: str | None = Field(title="Model Name")
|
||||
model_path: str | None = Field(title="Path")
|
||||
model_url: str | None = Field(title="URL")
|
||||
|
||||
class SDModelItem(BaseModel):
|
||||
title: str = Field(title="Title")
|
||||
model_name: str = Field(title="Model Name")
|
||||
hash: str = Field(title="Hash")
|
||||
filename: str = Field(title="Filename")
|
||||
config: str = Field(title="Config file")
|
||||
|
||||
class HypernetworkItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
path: str | None = Field(title="Path")
|
||||
|
||||
class FaceRestorerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
cmd_dir: str | None = Field(title="Path")
|
||||
|
||||
class RealesrganItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
path: str | None = Field(title="Path")
|
||||
scale: int | None = Field(title="Scale")
|
||||
|
||||
class PromptStyleItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
prompt: str | None = Field(title="Prompt")
|
||||
negative_prompt: str | None = Field(title="Negative Prompt")
|
||||
|
||||
class ArtistItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
score: float = Field(title="Score")
|
||||
category: str = Field(title="Category")
|
@@ -35,7 +35,8 @@ class HypernetworkModule(torch.nn.Module):
|
||||
}
|
||||
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
|
||||
|
||||
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, use_dropout=False):
|
||||
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
|
||||
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=True):
|
||||
super().__init__()
|
||||
|
||||
assert layer_structure is not None, "layer_structure must not be None"
|
||||
@@ -48,8 +49,8 @@ class HypernetworkModule(torch.nn.Module):
|
||||
# Add a fully-connected layer
|
||||
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||
|
||||
# Add an activation func
|
||||
if activation_func == "linear" or activation_func is None:
|
||||
# Add an activation func except last layer
|
||||
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
|
||||
pass
|
||||
elif activation_func in self.activation_dict:
|
||||
linears.append(self.activation_dict[activation_func]())
|
||||
@@ -60,8 +61,8 @@ class HypernetworkModule(torch.nn.Module):
|
||||
if add_layer_norm:
|
||||
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||
|
||||
# Add dropout expect last layer
|
||||
if use_dropout and i < len(layer_structure) - 3:
|
||||
# Add dropout except last layer
|
||||
if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2):
|
||||
linears.append(torch.nn.Dropout(p=0.3))
|
||||
|
||||
self.linear = torch.nn.Sequential(*linears)
|
||||
@@ -75,7 +76,7 @@ class HypernetworkModule(torch.nn.Module):
|
||||
w, b = layer.weight.data, layer.bias.data
|
||||
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
|
||||
normal_(w, mean=0.0, std=0.01)
|
||||
normal_(b, mean=0.0, std=0.005)
|
||||
normal_(b, mean=0.0, std=0)
|
||||
elif weight_init == 'XavierUniform':
|
||||
xavier_uniform_(w)
|
||||
zeros_(b)
|
||||
@@ -127,7 +128,7 @@ class Hypernetwork:
|
||||
filename = None
|
||||
name = None
|
||||
|
||||
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
|
||||
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
|
||||
self.filename = None
|
||||
self.name = name
|
||||
self.layers = {}
|
||||
@@ -139,11 +140,15 @@ class Hypernetwork:
|
||||
self.weight_init = weight_init
|
||||
self.add_layer_norm = add_layer_norm
|
||||
self.use_dropout = use_dropout
|
||||
self.activate_output = activate_output
|
||||
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
|
||||
|
||||
for size in enable_sizes or []:
|
||||
self.layers[size] = (
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
||||
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
||||
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||
)
|
||||
|
||||
def weights(self):
|
||||
@@ -171,7 +176,9 @@ class Hypernetwork:
|
||||
state_dict['use_dropout'] = self.use_dropout
|
||||
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
||||
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||
|
||||
state_dict['activate_output'] = self.activate_output
|
||||
state_dict['last_layer_dropout'] = self.last_layer_dropout
|
||||
|
||||
torch.save(state_dict, filename)
|
||||
|
||||
def load(self, filename):
|
||||
@@ -191,12 +198,17 @@ class Hypernetwork:
|
||||
print(f"Layer norm is set to {self.add_layer_norm}")
|
||||
self.use_dropout = state_dict.get('use_dropout', False)
|
||||
print(f"Dropout usage is set to {self.use_dropout}" )
|
||||
self.activate_output = state_dict.get('activate_output', True)
|
||||
print(f"Activate last layer is set to {self.activate_output}")
|
||||
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
|
||||
|
||||
for size, sd in state_dict.items():
|
||||
if type(size) == int:
|
||||
self.layers[size] = (
|
||||
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
|
||||
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
|
||||
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||
)
|
||||
|
||||
self.name = state_dict.get('name', self.name)
|
||||
|
@@ -49,7 +49,7 @@ def expand_crop_region(crop_region, processing_width, processing_height, image_w
|
||||
ratio_processing = processing_width / processing_height
|
||||
|
||||
if ratio_crop_region > ratio_processing:
|
||||
desired_height = (x2 - x1) * ratio_processing
|
||||
desired_height = (x2 - x1) / ratio_processing
|
||||
desired_height_diff = int(desired_height - (y2-y1))
|
||||
y1 -= desired_height_diff//2
|
||||
y2 += desired_height_diff - desired_height_diff//2
|
||||
|
@@ -134,11 +134,7 @@ class StableDiffusionProcessing():
|
||||
# Dummy zero conditioning if we're not using inpainting model.
|
||||
# Still takes up a bit of memory, but no encoder call.
|
||||
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
||||
return torch.zeros(
|
||||
x.shape[0], 5, 1, 1,
|
||||
dtype=x.dtype,
|
||||
device=x.device
|
||||
)
|
||||
return x.new_zeros(x.shape[0], 5, 1, 1)
|
||||
|
||||
height = height or self.height
|
||||
width = width or self.width
|
||||
@@ -156,11 +152,7 @@ class StableDiffusionProcessing():
|
||||
def img2img_image_conditioning(self, source_image, latent_image, image_mask = None):
|
||||
if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
|
||||
# Dummy zero conditioning if we're not using inpainting model.
|
||||
return torch.zeros(
|
||||
latent_image.shape[0], 5, 1, 1,
|
||||
dtype=latent_image.dtype,
|
||||
device=latent_image.device
|
||||
)
|
||||
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
||||
|
||||
# Handle the different mask inputs
|
||||
if image_mask is not None:
|
||||
@@ -174,11 +166,11 @@ class StableDiffusionProcessing():
|
||||
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
|
||||
conditioning_mask = torch.round(conditioning_mask)
|
||||
else:
|
||||
conditioning_mask = torch.ones(1, 1, *source_image.shape[-2:])
|
||||
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
|
||||
|
||||
# Create another latent image, this time with a masked version of the original input.
|
||||
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
||||
conditioning_mask = conditioning_mask.to(source_image.device)
|
||||
conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
|
||||
conditioning_image = torch.lerp(
|
||||
source_image,
|
||||
source_image * (1.0 - conditioning_mask),
|
||||
@@ -426,13 +418,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
try:
|
||||
for k, v in p.override_settings.items():
|
||||
opts.data[k] = v # we don't call onchange for simplicity which makes changing model, hypernet impossible
|
||||
setattr(opts, k, v) # we don't call onchange for simplicity which makes changing model, hypernet impossible
|
||||
|
||||
res = process_images_inner(p)
|
||||
|
||||
finally:
|
||||
for k, v in stored_opts.items():
|
||||
opts.data[k] = v
|
||||
setattr(opts, k, v)
|
||||
|
||||
return res
|
||||
|
||||
@@ -673,10 +665,17 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
|
||||
|
||||
if opts.use_scale_latent_for_hires_fix:
|
||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
|
||||
for i in range(samples.shape[0]):
|
||||
save_intermediate(samples, i)
|
||||
|
||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
|
||||
# Avoid making the inpainting conditioning unless necessary as
|
||||
# this does need some extra compute to decode / encode the image again.
|
||||
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
|
||||
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
|
||||
else:
|
||||
image_conditioning = self.txt2img_image_conditioning(samples)
|
||||
else:
|
||||
decoded_samples = decode_first_stage(self.sd_model, samples)
|
||||
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
@@ -700,14 +699,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
||||
|
||||
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
|
||||
|
||||
shared.state.nextjob()
|
||||
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
||||
|
||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
|
||||
image_conditioning = self.txt2img_image_conditioning(x)
|
||||
|
||||
# GC now before running the next img2img to prevent running out of memory
|
||||
x = None
|
||||
devices.torch_gc()
|
||||
|
@@ -18,6 +18,9 @@ class Script:
|
||||
args_to = None
|
||||
alwayson = False
|
||||
|
||||
"""A gr.Group component that has all script's UI inside it"""
|
||||
group = None
|
||||
|
||||
infotext_fields = None
|
||||
"""if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
|
||||
parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
|
||||
@@ -218,8 +221,6 @@ class ScriptRunner:
|
||||
|
||||
for control in controls:
|
||||
control.custom_script_source = os.path.basename(script.filename)
|
||||
if not script.alwayson:
|
||||
control.visible = False
|
||||
|
||||
if script.infotext_fields is not None:
|
||||
self.infotext_fields += script.infotext_fields
|
||||
@@ -229,40 +230,41 @@ class ScriptRunner:
|
||||
script.args_to = len(inputs)
|
||||
|
||||
for script in self.alwayson_scripts:
|
||||
with gr.Group():
|
||||
with gr.Group() as group:
|
||||
create_script_ui(script, inputs, inputs_alwayson)
|
||||
|
||||
script.group = group
|
||||
|
||||
dropdown = gr.Dropdown(label="Script", elem_id="script_list", choices=["None"] + self.titles, value="None", type="index")
|
||||
dropdown.save_to_config = True
|
||||
inputs[0] = dropdown
|
||||
|
||||
for script in self.selectable_scripts:
|
||||
create_script_ui(script, inputs, inputs_alwayson)
|
||||
with gr.Group(visible=False) as group:
|
||||
create_script_ui(script, inputs, inputs_alwayson)
|
||||
|
||||
script.group = group
|
||||
|
||||
def select_script(script_index):
|
||||
if 0 < script_index <= len(self.selectable_scripts):
|
||||
script = self.selectable_scripts[script_index-1]
|
||||
args_from = script.args_from
|
||||
args_to = script.args_to
|
||||
else:
|
||||
args_from = 0
|
||||
args_to = 0
|
||||
selected_script = self.selectable_scripts[script_index - 1] if script_index>0 else None
|
||||
|
||||
return [ui.gr_show(True if i == 0 else args_from <= i < args_to or is_alwayson) for i, is_alwayson in enumerate(inputs_alwayson)]
|
||||
return [gr.update(visible=selected_script == s) for s in self.selectable_scripts]
|
||||
|
||||
def init_field(title):
|
||||
"""called when an initial value is set from ui-config.json to show script's UI components"""
|
||||
|
||||
if title == 'None':
|
||||
return
|
||||
|
||||
script_index = self.titles.index(title)
|
||||
script = self.selectable_scripts[script_index]
|
||||
for i in range(script.args_from, script.args_to):
|
||||
inputs[i].visible = True
|
||||
self.selectable_scripts[script_index].group.visible = True
|
||||
|
||||
dropdown.init_field = init_field
|
||||
|
||||
dropdown.change(
|
||||
fn=select_script,
|
||||
inputs=[dropdown],
|
||||
outputs=inputs
|
||||
outputs=[script.group for script in self.selectable_scripts]
|
||||
)
|
||||
|
||||
return inputs
|
||||
|
@@ -163,11 +163,11 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
sd_model_hash = checkpoint_info.hash
|
||||
|
||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
if shared.opts.sd_checkpoint_cache > 0 and hasattr(model, "sd_checkpoint_info"):
|
||||
sd_vae.restore_base_vae(model)
|
||||
checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy()
|
||||
|
||||
checkpoint_key = checkpoint_info
|
||||
|
||||
if checkpoint_key not in checkpoints_loaded:
|
||||
if checkpoint_info not in checkpoints_loaded:
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
@@ -197,17 +197,15 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
if shared.opts.sd_checkpoint_cache > 0:
|
||||
# if PR #4035 were to get merged, restore base VAE first before caching
|
||||
checkpoints_loaded[checkpoint_key] = model.state_dict().copy()
|
||||
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
||||
checkpoints_loaded.popitem(last=False) # LRU
|
||||
|
||||
else:
|
||||
vae_name = sd_vae.get_filename(vae_file)
|
||||
print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache")
|
||||
checkpoints_loaded.move_to_end(checkpoint_key)
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_key])
|
||||
vae_name = sd_vae.get_filename(vae_file) if vae_file else None
|
||||
vae_message = f" with {vae_name} VAE" if vae_name else ""
|
||||
print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||
|
||||
if shared.opts.sd_checkpoint_cache > 0:
|
||||
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
||||
checkpoints_loaded.popitem(last=False) # LRU
|
||||
|
||||
model.sd_model_hash = sd_model_hash
|
||||
model.sd_model_checkpoint = checkpoint_file
|
||||
|
@@ -44,6 +44,7 @@ parser.add_argument("--precision", type=str, help="evaluate at this precision",
|
||||
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
|
||||
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
||||
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
|
||||
parser.add_argument("--enable-insecure-extension-access", action='store_true', help="enable extensions tab regardless of other options")
|
||||
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
|
||||
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
|
||||
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
|
||||
@@ -99,7 +100,7 @@ restricted_opts = {
|
||||
"outdir_save",
|
||||
}
|
||||
|
||||
cmd_opts.disable_extension_access = cmd_opts.share or cmd_opts.listen
|
||||
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen) and not cmd_opts.enable_insecure_extension_access
|
||||
|
||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
|
||||
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'])
|
||||
@@ -146,6 +147,9 @@ class State:
|
||||
self.interrupted = True
|
||||
|
||||
def nextjob(self):
|
||||
if opts.show_progress_every_n_steps == -1:
|
||||
self.do_set_current_image()
|
||||
|
||||
self.job_no += 1
|
||||
self.sampling_step = 0
|
||||
self.current_image_sampling_step = 0
|
||||
@@ -186,17 +190,21 @@ class State:
|
||||
|
||||
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
|
||||
def set_current_image(self):
|
||||
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.show_progress_every_n_steps > 0:
|
||||
self.do_set_current_image()
|
||||
|
||||
def do_set_current_image(self):
|
||||
if not parallel_processing_allowed:
|
||||
return
|
||||
if self.current_latent is None:
|
||||
return
|
||||
|
||||
if opts.show_progress_grid:
|
||||
self.current_image = sd_samplers.samples_to_image_grid(self.current_latent)
|
||||
else:
|
||||
self.current_image = sd_samplers.sample_to_image(self.current_latent)
|
||||
|
||||
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and self.current_latent is not None:
|
||||
if opts.show_progress_grid:
|
||||
self.current_image = sd_samplers.samples_to_image_grid(self.current_latent)
|
||||
else:
|
||||
self.current_image = sd_samplers.sample_to_image(self.current_latent)
|
||||
|
||||
self.current_image_sampling_step = self.sampling_step
|
||||
|
||||
self.current_image_sampling_step = self.sampling_step
|
||||
|
||||
state = State()
|
||||
|
||||
@@ -351,7 +359,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
|
||||
|
||||
options_templates.update(options_section(('ui', "User interface"), {
|
||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set to 0 to disable. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
|
||||
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
|
||||
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
||||
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
||||
@@ -396,6 +404,15 @@ class Options:
|
||||
def __setattr__(self, key, value):
|
||||
if self.data is not None:
|
||||
if key in self.data or key in self.data_labels:
|
||||
assert not cmd_opts.freeze_settings, "changing settings is disabled"
|
||||
|
||||
comp_args = opts.data_labels[key].component_args
|
||||
if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
|
||||
raise RuntimeError(f"not possible to set {key} because it is restricted")
|
||||
|
||||
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
|
||||
raise RuntimeError(f"not possible to set {key} because it is restricted")
|
||||
|
||||
self.data[key] = value
|
||||
return
|
||||
|
||||
@@ -412,6 +429,8 @@ class Options:
|
||||
return super(Options, self).__getattribute__(item)
|
||||
|
||||
def save(self, filename):
|
||||
assert not cmd_opts.freeze_settings, "saving settings is disabled"
|
||||
|
||||
with open(filename, "w", encoding="utf8") as file:
|
||||
json.dump(self.data, file, indent=4)
|
||||
|
||||
|
@@ -276,7 +276,7 @@ def check_progress_call(id_part):
|
||||
image = gr_show(False)
|
||||
preview_visibility = gr_show(False)
|
||||
|
||||
if opts.show_progress_every_n_steps > 0:
|
||||
if opts.show_progress_every_n_steps != 0:
|
||||
shared.state.set_current_image()
|
||||
image = shared.state.current_image
|
||||
|
||||
@@ -1052,6 +1052,8 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.")
|
||||
show_extras_results = gr.Checkbox(label='Show result images', value=True)
|
||||
|
||||
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
|
||||
|
||||
with gr.Tabs(elem_id="extras_resize_mode"):
|
||||
with gr.TabItem('Scale by'):
|
||||
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4)
|
||||
@@ -1079,8 +1081,6 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.Group():
|
||||
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
|
||||
|
||||
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
|
||||
|
||||
result_images, html_info_x, html_info = create_output_panel("extras", opts.outdir_extras_samples)
|
||||
|
||||
submit.click(
|
||||
@@ -1182,8 +1182,8 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
new_hypernetwork_name = gr.Textbox(label="Name")
|
||||
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
|
||||
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
|
||||
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork", choices=modules.hypernetworks.ui.keys)
|
||||
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. relu-like - Kaiming, sigmoid-like - Xavier is recommended", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
|
||||
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys)
|
||||
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
|
||||
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
|
||||
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
|
||||
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
|
||||
@@ -1438,25 +1438,16 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
def run_settings(*args):
|
||||
changed = 0
|
||||
|
||||
assert not shared.cmd_opts.freeze_settings, "changing settings is disabled"
|
||||
|
||||
for key, value, comp in zip(opts.data_labels.keys(), args, components):
|
||||
if comp != dummy_component and not opts.same_type(value, opts.data_labels[key].default):
|
||||
return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}", opts.dumpjson()
|
||||
assert comp == dummy_component or opts.same_type(value, opts.data_labels[key].default), f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}"
|
||||
|
||||
for key, value, comp in zip(opts.data_labels.keys(), args, components):
|
||||
if comp == dummy_component:
|
||||
continue
|
||||
|
||||
comp_args = opts.data_labels[key].component_args
|
||||
if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False:
|
||||
continue
|
||||
|
||||
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
|
||||
continue
|
||||
|
||||
oldval = opts.data.get(key, None)
|
||||
opts.data[key] = value
|
||||
|
||||
setattr(opts, key, value)
|
||||
|
||||
if oldval != value:
|
||||
if opts.data_labels[key].onchange is not None:
|
||||
@@ -1466,20 +1457,18 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
|
||||
opts.save(shared.config_filename)
|
||||
|
||||
return f'{changed} settings changed.', opts.dumpjson()
|
||||
return opts.dumpjson(), f'{changed} settings changed.'
|
||||
|
||||
def run_settings_single(value, key):
|
||||
assert not shared.cmd_opts.freeze_settings, "changing settings is disabled"
|
||||
|
||||
if not opts.same_type(value, opts.data_labels[key].default):
|
||||
return gr.update(visible=True), opts.dumpjson()
|
||||
|
||||
oldval = opts.data.get(key, None)
|
||||
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
|
||||
try:
|
||||
setattr(opts, key, value)
|
||||
except Exception:
|
||||
return gr.update(value=oldval), opts.dumpjson()
|
||||
|
||||
opts.data[key] = value
|
||||
|
||||
if oldval != value:
|
||||
if opts.data_labels[key].onchange is not None:
|
||||
opts.data_labels[key].onchange()
|
||||
@@ -1632,9 +1621,9 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
|
||||
text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False)
|
||||
settings_submit.click(
|
||||
fn=run_settings,
|
||||
fn=wrap_gradio_call(run_settings, extra_outputs=[gr.update()]),
|
||||
inputs=components,
|
||||
outputs=[result, text_settings],
|
||||
outputs=[text_settings, result],
|
||||
)
|
||||
|
||||
for i, k, item in quicksettings_list:
|
||||
|
Reference in New Issue
Block a user