remove scale latent and no-crop options from hires fix

support copy-pasting new parameters for hires fix
This commit is contained in:
AUTOMATIC
2022-10-14 17:03:03 +03:00
parent b382de2d77
commit e644b5a80b
3 changed files with 33 additions and 55 deletions

View File

@@ -506,14 +506,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
firstphase_width_truncated = 0
firstphase_height_truncated = 0
def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, firstphase_width=512, firstphase_height=512, crop_scale=False, **kwargs):
def __init__(self, enable_hr=False, denoising_strength=0.75, firstphase_width=512, firstphase_height=512, **kwargs):
super().__init__(**kwargs)
self.enable_hr = enable_hr
self.scale_latent = scale_latent
self.denoising_strength = denoising_strength
self.firstphase_width = firstphase_width
self.firstphase_height = firstphase_height
self.crop_scale = crop_scale
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
@@ -530,6 +528,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
return samples
self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
@@ -538,46 +538,36 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
width_ratio = self.width/self.firstphase_width
height_ratio = self.height/self.firstphase_height
if self.crop_scale:
if width_ratio > height_ratio:
#Crop to landscape
truncate_y = int((self.width - self.firstphase_width) / width_ratio / height_ratio / opt_f)
if width_ratio > height_ratio:
truncate_y = int((self.width - self.firstphase_width) / width_ratio / height_ratio / opt_f)
elif width_ratio < height_ratio:
#Crop to portrait
truncate_x = int((self.height - self.firstphase_height) / width_ratio / height_ratio / opt_f)
elif width_ratio < height_ratio:
truncate_x = int((self.height - self.firstphase_height) / width_ratio / height_ratio / opt_f)
samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
decoded_samples = decode_first_stage(self.sd_model, samples)
if self.scale_latent:
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None":
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
else:
decoded_samples = decode_first_stage(self.sd_model, samples)
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None":
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
else:
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
batch_images = []
for i, x_sample in enumerate(lowres_samples):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
image = images.resize_image(0, image, self.width, self.height)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
batch_images.append(image)
batch_images = []
for i, x_sample in enumerate(lowres_samples):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
image = images.resize_image(0, image, self.width, self.height)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
batch_images.append(image)
decoded_samples = torch.from_numpy(np.array(batch_images))
decoded_samples = decoded_samples.to(shared.device)
decoded_samples = 2. * decoded_samples - 1.
decoded_samples = torch.from_numpy(np.array(batch_images))
decoded_samples = decoded_samples.to(shared.device)
decoded_samples = 2. * decoded_samples - 1.
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
shared.state.nextjob()