mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-03 10:50:23 +00:00
Merge branch 'dev' into feat/interrupted-end
This commit is contained in:
30
scripts/postprocessing_caption.py
Normal file
30
scripts/postprocessing_caption.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from modules import scripts_postprocessing, ui_components, deepbooru, shared
|
||||
import gradio as gr
|
||||
|
||||
|
||||
class ScriptPostprocessingCeption(scripts_postprocessing.ScriptPostprocessing):
|
||||
name = "Caption"
|
||||
order = 4040
|
||||
|
||||
def ui(self):
|
||||
with ui_components.InputAccordion(False, label="Caption") as enable:
|
||||
option = gr.CheckboxGroup(value=["Deepbooru"], choices=["Deepbooru", "BLIP"], show_label=False)
|
||||
|
||||
return {
|
||||
"enable": enable,
|
||||
"option": option,
|
||||
}
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, option):
|
||||
if not enable:
|
||||
return
|
||||
|
||||
captions = [pp.caption]
|
||||
|
||||
if "Deepbooru" in option:
|
||||
captions.append(deepbooru.model.tag(pp.image))
|
||||
|
||||
if "BLIP" in option:
|
||||
captions.append(shared.interrogator.interrogate(pp.image.convert("RGB")))
|
||||
|
||||
pp.caption = ", ".join([x for x in captions if x])
|
@@ -1,28 +1,28 @@
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
from modules import scripts_postprocessing, codeformer_model
|
||||
from modules import scripts_postprocessing, codeformer_model, ui_components
|
||||
import gradio as gr
|
||||
|
||||
from modules.ui_components import FormRow
|
||||
|
||||
|
||||
class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing):
|
||||
name = "CodeFormer"
|
||||
order = 3000
|
||||
|
||||
def ui(self):
|
||||
with FormRow():
|
||||
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, elem_id="extras_codeformer_visibility")
|
||||
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
|
||||
with ui_components.InputAccordion(False, label="CodeFormer") as enable:
|
||||
with gr.Row():
|
||||
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_codeformer_visibility")
|
||||
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
|
||||
|
||||
return {
|
||||
"enable": enable,
|
||||
"codeformer_visibility": codeformer_visibility,
|
||||
"codeformer_weight": codeformer_weight,
|
||||
}
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, codeformer_visibility, codeformer_weight):
|
||||
if codeformer_visibility == 0:
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, codeformer_visibility, codeformer_weight):
|
||||
if codeformer_visibility == 0 or not enable:
|
||||
return
|
||||
|
||||
restored_img = codeformer_model.codeformer.restore(np.array(pp.image, dtype=np.uint8), w=codeformer_weight)
|
||||
|
32
scripts/postprocessing_create_flipped_copies.py
Normal file
32
scripts/postprocessing_create_flipped_copies.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from PIL import ImageOps, Image
|
||||
|
||||
from modules import scripts_postprocessing, ui_components
|
||||
import gradio as gr
|
||||
|
||||
|
||||
class ScriptPostprocessingCreateFlippedCopies(scripts_postprocessing.ScriptPostprocessing):
|
||||
name = "Create flipped copies"
|
||||
order = 4030
|
||||
|
||||
def ui(self):
|
||||
with ui_components.InputAccordion(False, label="Create flipped copies") as enable:
|
||||
with gr.Row():
|
||||
option = gr.CheckboxGroup(value=["Horizontal"], choices=["Horizontal", "Vertical", "Both"], show_label=False)
|
||||
|
||||
return {
|
||||
"enable": enable,
|
||||
"option": option,
|
||||
}
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, option):
|
||||
if not enable:
|
||||
return
|
||||
|
||||
if "Horizontal" in option:
|
||||
pp.extra_images.append(ImageOps.mirror(pp.image))
|
||||
|
||||
if "Vertical" in option:
|
||||
pp.extra_images.append(pp.image.transpose(Image.Transpose.FLIP_TOP_BOTTOM))
|
||||
|
||||
if "Both" in option:
|
||||
pp.extra_images.append(pp.image.transpose(Image.Transpose.FLIP_TOP_BOTTOM).transpose(Image.Transpose.FLIP_LEFT_RIGHT))
|
54
scripts/postprocessing_focal_crop.py
Normal file
54
scripts/postprocessing_focal_crop.py
Normal file
@@ -0,0 +1,54 @@
|
||||
|
||||
from modules import scripts_postprocessing, ui_components, errors
|
||||
import gradio as gr
|
||||
|
||||
from modules.textual_inversion import autocrop
|
||||
|
||||
|
||||
class ScriptPostprocessingFocalCrop(scripts_postprocessing.ScriptPostprocessing):
|
||||
name = "Auto focal point crop"
|
||||
order = 4010
|
||||
|
||||
def ui(self):
|
||||
with ui_components.InputAccordion(False, label="Auto focal point crop") as enable:
|
||||
face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_face_weight")
|
||||
entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_entropy_weight")
|
||||
edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_edges_weight")
|
||||
debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
|
||||
|
||||
return {
|
||||
"enable": enable,
|
||||
"face_weight": face_weight,
|
||||
"entropy_weight": entropy_weight,
|
||||
"edges_weight": edges_weight,
|
||||
"debug": debug,
|
||||
}
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, face_weight, entropy_weight, edges_weight, debug):
|
||||
if not enable:
|
||||
return
|
||||
|
||||
if not pp.shared.target_width or not pp.shared.target_height:
|
||||
return
|
||||
|
||||
dnn_model_path = None
|
||||
try:
|
||||
dnn_model_path = autocrop.download_and_cache_models()
|
||||
except Exception:
|
||||
errors.report("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", exc_info=True)
|
||||
|
||||
autocrop_settings = autocrop.Settings(
|
||||
crop_width=pp.shared.target_width,
|
||||
crop_height=pp.shared.target_height,
|
||||
face_points_weight=face_weight,
|
||||
entropy_points_weight=entropy_weight,
|
||||
corner_points_weight=edges_weight,
|
||||
annotate_image=debug,
|
||||
dnn_model_path=dnn_model_path,
|
||||
)
|
||||
|
||||
result, *others = autocrop.crop_image(pp.image, autocrop_settings)
|
||||
|
||||
pp.image = result
|
||||
pp.extra_images = [pp.create_copy(x, nametags=["focal-crop-debug"], disable_processing=True) for x in others]
|
||||
|
@@ -1,26 +1,25 @@
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
from modules import scripts_postprocessing, gfpgan_model
|
||||
from modules import scripts_postprocessing, gfpgan_model, ui_components
|
||||
import gradio as gr
|
||||
|
||||
from modules.ui_components import FormRow
|
||||
|
||||
|
||||
class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
|
||||
name = "GFPGAN"
|
||||
order = 2000
|
||||
|
||||
def ui(self):
|
||||
with FormRow():
|
||||
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, elem_id="extras_gfpgan_visibility")
|
||||
with ui_components.InputAccordion(False, label="GFPGAN") as enable:
|
||||
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_gfpgan_visibility")
|
||||
|
||||
return {
|
||||
"enable": enable,
|
||||
"gfpgan_visibility": gfpgan_visibility,
|
||||
}
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, gfpgan_visibility):
|
||||
if gfpgan_visibility == 0:
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, gfpgan_visibility):
|
||||
if gfpgan_visibility == 0 or not enable:
|
||||
return
|
||||
|
||||
restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8))
|
||||
|
71
scripts/postprocessing_split_oversized.py
Normal file
71
scripts/postprocessing_split_oversized.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import math
|
||||
|
||||
from modules import scripts_postprocessing, ui_components
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def split_pic(image, inverse_xy, width, height, overlap_ratio):
|
||||
if inverse_xy:
|
||||
from_w, from_h = image.height, image.width
|
||||
to_w, to_h = height, width
|
||||
else:
|
||||
from_w, from_h = image.width, image.height
|
||||
to_w, to_h = width, height
|
||||
h = from_h * to_w // from_w
|
||||
if inverse_xy:
|
||||
image = image.resize((h, to_w))
|
||||
else:
|
||||
image = image.resize((to_w, h))
|
||||
|
||||
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
|
||||
y_step = (h - to_h) / (split_count - 1)
|
||||
for i in range(split_count):
|
||||
y = int(y_step * i)
|
||||
if inverse_xy:
|
||||
splitted = image.crop((y, 0, y + to_h, to_w))
|
||||
else:
|
||||
splitted = image.crop((0, y, to_w, y + to_h))
|
||||
yield splitted
|
||||
|
||||
|
||||
class ScriptPostprocessingSplitOversized(scripts_postprocessing.ScriptPostprocessing):
|
||||
name = "Split oversized images"
|
||||
order = 4000
|
||||
|
||||
def ui(self):
|
||||
with ui_components.InputAccordion(False, label="Split oversized images") as enable:
|
||||
with gr.Row():
|
||||
split_threshold = gr.Slider(label='Threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_split_threshold")
|
||||
overlap_ratio = gr.Slider(label='Overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="postprocess_overlap_ratio")
|
||||
|
||||
return {
|
||||
"enable": enable,
|
||||
"split_threshold": split_threshold,
|
||||
"overlap_ratio": overlap_ratio,
|
||||
}
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, split_threshold, overlap_ratio):
|
||||
if not enable:
|
||||
return
|
||||
|
||||
width = pp.shared.target_width
|
||||
height = pp.shared.target_height
|
||||
|
||||
if not width or not height:
|
||||
return
|
||||
|
||||
if pp.image.height > pp.image.width:
|
||||
ratio = (pp.image.width * height) / (pp.image.height * width)
|
||||
inverse_xy = False
|
||||
else:
|
||||
ratio = (pp.image.height * width) / (pp.image.width * height)
|
||||
inverse_xy = True
|
||||
|
||||
if ratio >= 1.0 and ratio > split_threshold:
|
||||
return
|
||||
|
||||
result, *others = split_pic(pp.image, inverse_xy, width, height, overlap_ratio)
|
||||
|
||||
pp.image = result
|
||||
pp.extra_images = [pp.create_copy(x) for x in others]
|
||||
|
@@ -81,6 +81,14 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
|
||||
|
||||
return image
|
||||
|
||||
def process_firstpass(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0):
|
||||
if upscale_mode == 1:
|
||||
pp.shared.target_width = upscale_to_width
|
||||
pp.shared.target_height = upscale_to_height
|
||||
else:
|
||||
pp.shared.target_width = int(pp.image.width * upscale_by)
|
||||
pp.shared.target_height = int(pp.image.height * upscale_by)
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0):
|
||||
if upscaler_1_name == "None":
|
||||
upscaler_1_name = None
|
||||
@@ -126,6 +134,10 @@ class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
|
||||
"upscaler_name": upscaler_name,
|
||||
}
|
||||
|
||||
def process_firstpass(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None):
|
||||
pp.shared.target_width = int(pp.image.width * upscale_by)
|
||||
pp.shared.target_height = int(pp.image.height * upscale_by)
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None):
|
||||
if upscaler_name is None or upscaler_name == "None":
|
||||
return
|
||||
|
64
scripts/processing_autosized_crop.py
Normal file
64
scripts/processing_autosized_crop.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from PIL import Image
|
||||
|
||||
from modules import scripts_postprocessing, ui_components
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def center_crop(image: Image, w: int, h: int):
|
||||
iw, ih = image.size
|
||||
if ih / h < iw / w:
|
||||
sw = w * ih / h
|
||||
box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih
|
||||
else:
|
||||
sh = h * iw / w
|
||||
box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2
|
||||
return image.resize((w, h), Image.Resampling.LANCZOS, box)
|
||||
|
||||
|
||||
def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold):
|
||||
iw, ih = image.size
|
||||
err = lambda w, h: 1 - (lambda x: x if x < 1 else 1 / x)(iw / ih / (w / h))
|
||||
wh = max(((w, h) for w in range(mindim, maxdim + 1, 64) for h in range(mindim, maxdim + 1, 64)
|
||||
if minarea <= w * h <= maxarea and err(w, h) <= threshold),
|
||||
key=lambda wh: (wh[0] * wh[1], -err(*wh))[::1 if objective == 'Maximize area' else -1],
|
||||
default=None
|
||||
)
|
||||
return wh and center_crop(image, *wh)
|
||||
|
||||
|
||||
class ScriptPostprocessingAutosizedCrop(scripts_postprocessing.ScriptPostprocessing):
|
||||
name = "Auto-sized crop"
|
||||
order = 4020
|
||||
|
||||
def ui(self):
|
||||
with ui_components.InputAccordion(False, label="Auto-sized crop") as enable:
|
||||
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
|
||||
with gr.Row():
|
||||
mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="postprocess_multicrop_mindim")
|
||||
maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="postprocess_multicrop_maxdim")
|
||||
with gr.Row():
|
||||
minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id="postprocess_multicrop_minarea")
|
||||
maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id="postprocess_multicrop_maxarea")
|
||||
with gr.Row():
|
||||
objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="postprocess_multicrop_objective")
|
||||
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="postprocess_multicrop_threshold")
|
||||
|
||||
return {
|
||||
"enable": enable,
|
||||
"mindim": mindim,
|
||||
"maxdim": maxdim,
|
||||
"minarea": minarea,
|
||||
"maxarea": maxarea,
|
||||
"objective": objective,
|
||||
"threshold": threshold,
|
||||
}
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, mindim, maxdim, minarea, maxarea, objective, threshold):
|
||||
if not enable:
|
||||
return
|
||||
|
||||
cropped = multicrop_pic(pp.image, mindim, maxdim, minarea, maxarea, objective, threshold)
|
||||
if cropped is not None:
|
||||
pp.image = cropped
|
||||
else:
|
||||
print(f"skipped {pp.image.width}x{pp.image.height} image (can't find suitable size within error threshold)")
|
@@ -114,6 +114,7 @@ class Script(scripts.Script):
|
||||
def ui(self, is_img2img):
|
||||
checkbox_iterate = gr.Checkbox(label="Iterate seed every line", value=False, elem_id=self.elem_id("checkbox_iterate"))
|
||||
checkbox_iterate_batch = gr.Checkbox(label="Use same random seed for all lines", value=False, elem_id=self.elem_id("checkbox_iterate_batch"))
|
||||
prompt_position = gr.Radio(["start", "end"], label="Insert prompts at the", elem_id=self.elem_id("prompt_position"), value="start")
|
||||
|
||||
prompt_txt = gr.Textbox(label="List of prompt inputs", lines=1, elem_id=self.elem_id("prompt_txt"))
|
||||
file = gr.File(label="Upload prompt inputs", type='binary', elem_id=self.elem_id("file"))
|
||||
@@ -124,9 +125,9 @@ class Script(scripts.Script):
|
||||
# We don't shrink back to 1, because that causes the control to ignore [enter], and it may
|
||||
# be unclear to the user that shift-enter is needed.
|
||||
prompt_txt.change(lambda tb: gr.update(lines=7) if ("\n" in tb) else gr.update(lines=2), inputs=[prompt_txt], outputs=[prompt_txt], show_progress=False)
|
||||
return [checkbox_iterate, checkbox_iterate_batch, prompt_txt]
|
||||
return [checkbox_iterate, checkbox_iterate_batch, prompt_position, prompt_txt]
|
||||
|
||||
def run(self, p, checkbox_iterate, checkbox_iterate_batch, prompt_txt: str):
|
||||
def run(self, p, checkbox_iterate, checkbox_iterate_batch, prompt_position, prompt_txt: str):
|
||||
lines = [x for x in (x.strip() for x in prompt_txt.splitlines()) if x]
|
||||
|
||||
p.do_not_save_grid = True
|
||||
@@ -167,6 +168,18 @@ class Script(scripts.Script):
|
||||
else:
|
||||
setattr(copy_p, k, v)
|
||||
|
||||
if args.get("prompt") and p.prompt:
|
||||
if prompt_position == "start":
|
||||
copy_p.prompt = args.get("prompt") + " " + p.prompt
|
||||
else:
|
||||
copy_p.prompt = p.prompt + " " + args.get("prompt")
|
||||
|
||||
if args.get("negative_prompt") and p.negative_prompt:
|
||||
if prompt_position == "start":
|
||||
copy_p.negative_prompt = args.get("negative_prompt") + " " + p.negative_prompt
|
||||
else:
|
||||
copy_p.negative_prompt = p.negative_prompt + " " + args.get("negative_prompt")
|
||||
|
||||
proc = process_images(copy_p)
|
||||
images += proc.images
|
||||
|
||||
|
@@ -270,6 +270,7 @@ axis_options = [
|
||||
AxisOption("Refiner checkpoint", str, apply_field('refiner_checkpoint'), format_value=format_remove_path, confirm=confirm_checkpoints_or_none, cost=1.0, choices=lambda: ['None'] + sorted(sd_models.checkpoints_list, key=str.casefold)),
|
||||
AxisOption("Refiner switch at", float, apply_field('refiner_switch_at')),
|
||||
AxisOption("RNG source", str, apply_override("randn_source"), choices=lambda: ["GPU", "CPU", "NV"]),
|
||||
AxisOption("FP8 mode", str, apply_override("fp8_storage"), cost=0.9, choices=lambda: ["Disable", "Enable for SDXL", "Enable"]),
|
||||
]
|
||||
|
||||
|
||||
@@ -437,13 +438,16 @@ class Script(scripts.Script):
|
||||
with gr.Column():
|
||||
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
|
||||
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
|
||||
with gr.Row():
|
||||
vary_seeds_x = gr.Checkbox(label='Vary seeds for X', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_x"), tooltip="Use different seeds for images along X axis.")
|
||||
vary_seeds_y = gr.Checkbox(label='Vary seeds for Y', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_y"), tooltip="Use different seeds for images along Y axis.")
|
||||
vary_seeds_z = gr.Checkbox(label='Vary seeds for Z', value=False, min_width=80, elem_id=self.elem_id("vary_seeds_z"), tooltip="Use different seeds for images along Z axis.")
|
||||
with gr.Column():
|
||||
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
|
||||
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
|
||||
csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False, elem_id=self.elem_id("csv_mode"))
|
||||
with gr.Column():
|
||||
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
||||
with gr.Column():
|
||||
csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False, elem_id=self.elem_id("csv_mode"))
|
||||
|
||||
with gr.Row(variant="compact", elem_id="swap_axes"):
|
||||
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
|
||||
@@ -475,6 +479,8 @@ class Script(scripts.Script):
|
||||
fill_z_button.click(fn=fill, inputs=[z_type, csv_mode], outputs=[z_values, z_values_dropdown])
|
||||
|
||||
def select_axis(axis_type, axis_values, axis_values_dropdown, csv_mode):
|
||||
axis_type = axis_type or 0 # if axle type is None set to 0
|
||||
|
||||
choices = self.current_axis_options[axis_type].choices
|
||||
has_choices = choices is not None
|
||||
|
||||
@@ -522,9 +528,11 @@ class Script(scripts.Script):
|
||||
(z_values_dropdown, lambda params: get_dropdown_update_from_params("Z", params)),
|
||||
)
|
||||
|
||||
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size, csv_mode]
|
||||
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]
|
||||
|
||||
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode):
|
||||
x_type, y_type, z_type = x_type or 0, y_type or 0, z_type or 0 # if axle type is None set to 0
|
||||
|
||||
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size, csv_mode):
|
||||
if not no_fixed_seeds:
|
||||
modules.processing.fix_seed(p)
|
||||
|
||||
@@ -697,6 +705,16 @@ class Script(scripts.Script):
|
||||
y_opt.apply(pc, y, ys)
|
||||
z_opt.apply(pc, z, zs)
|
||||
|
||||
xdim = len(xs) if vary_seeds_x else 1
|
||||
ydim = len(ys) if vary_seeds_y else 1
|
||||
|
||||
if vary_seeds_x:
|
||||
pc.seed += ix
|
||||
if vary_seeds_y:
|
||||
pc.seed += iy * xdim
|
||||
if vary_seeds_z:
|
||||
pc.seed += iz * xdim * ydim
|
||||
|
||||
try:
|
||||
res = process_images(pc)
|
||||
except Exception as e:
|
||||
|
Reference in New Issue
Block a user