ManualCast for 10/16 series gpu

This commit is contained in:
Kohaku-Blueleaf
2023-10-28 15:24:26 +08:00
parent 0beb131c7f
commit d4d3134f6d
3 changed files with 62 additions and 14 deletions

View File

@@ -16,6 +16,23 @@ def has_mps() -> bool:
return mac_specific.has_mps
def cuda_no_autocast(device_id=None) -> bool:
if device_id is None:
device_id = get_cuda_device_id()
return (
torch.cuda.get_device_capability(device_id) == (7, 5)
and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16")
)
def get_cuda_device_id():
return (
int(shared.cmd_opts.device_id)
if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit()
else 0
) or torch.cuda.current_device()
def get_cuda_device_string():
if shared.cmd_opts.device_id is not None:
return f"cuda:{shared.cmd_opts.device_id}"
@@ -60,8 +77,7 @@ def enable_tf32():
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
device_id = (int(shared.cmd_opts.device_id) if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit() else 0) or torch.cuda.current_device()
if torch.cuda.get_device_capability(device_id) == (7, 5) and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16"):
if cuda_no_autocast():
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
@@ -92,15 +108,44 @@ def cond_cast_float(input):
nv_rng = None
patch_module_list = [
torch.nn.Linear,
torch.nn.Conv2d,
torch.nn.MultiheadAttention,
torch.nn.GroupNorm,
torch.nn.LayerNorm,
]
@contextlib.contextmanager
def manual_autocast():
def manual_cast_forward(self, *args, **kwargs):
org_dtype = next(self.parameters()).dtype
self.to(dtype)
result = self.org_forward(*args, **kwargs)
self.to(org_dtype)
return result
for module_type in patch_module_list:
org_forward = module_type.forward
module_type.forward = manual_cast_forward
module_type.org_forward = org_forward
try:
yield None
finally:
for module_type in patch_module_list:
module_type.forward = module_type.org_forward
def autocast(disable=False, unet=False):
def autocast(disable=False):
print(fp8, dtype, shared.cmd_opts.precision, device)
if disable:
return contextlib.nullcontext()
if unet and fp8 and device==cpu:
if fp8 and device==cpu:
return torch.autocast("cpu", dtype=torch.bfloat16, enabled=True)
if fp8 and (dtype == torch.float32 or shared.cmd_opts.precision == "full" or cuda_no_autocast()):
return manual_autocast()
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
return contextlib.nullcontext()