mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 19:22:32 +00:00
Merge pull request #2037 from AUTOMATIC1111/embed-embeddings-in-images
Add option to store TI embeddings in png chunks, and load from same.
This commit is contained in:
@@ -7,11 +7,15 @@ import tqdm
|
||||
import html
|
||||
import datetime
|
||||
|
||||
from PIL import Image, PngImagePlugin
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||
|
||||
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
|
||||
insert_image_data_embed, extract_image_data_embed,
|
||||
caption_image_overlay)
|
||||
|
||||
class Embedding:
|
||||
def __init__(self, vec, name, step=None):
|
||||
@@ -81,7 +85,18 @@ class EmbeddingDatabase:
|
||||
def process_file(path, filename):
|
||||
name = os.path.splitext(filename)[0]
|
||||
|
||||
data = torch.load(path, map_location="cpu")
|
||||
data = []
|
||||
|
||||
if filename.upper().endswith('.PNG'):
|
||||
embed_image = Image.open(path)
|
||||
if 'sd-ti-embedding' in embed_image.text:
|
||||
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = extract_image_data_embed(embed_image)
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = torch.load(path, map_location="cpu")
|
||||
|
||||
# textual inversion embeddings
|
||||
if 'string_to_param' in data:
|
||||
@@ -157,7 +172,8 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
||||
return fn
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
@@ -179,6 +195,12 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
else:
|
||||
images_dir = None
|
||||
|
||||
if create_image_every > 0 and save_image_with_stored_embedding:
|
||||
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
|
||||
os.makedirs(images_embeds_dir, exist_ok=True)
|
||||
else:
|
||||
images_embeds_dir = None
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
@@ -262,6 +284,26 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
image = processed.images[0]
|
||||
|
||||
shared.state.current_image = image
|
||||
|
||||
if save_image_with_stored_embedding and os.path.exists(last_saved_file):
|
||||
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
info = PngImagePlugin.PngInfo()
|
||||
data = torch.load(last_saved_file)
|
||||
info.add_text("sd-ti-embedding", embedding_to_b64(data))
|
||||
|
||||
title = "<{}>".format(data.get('name', '???'))
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
footer_left = checkpoint.model_name
|
||||
footer_mid = '[{}]'.format(checkpoint.hash)
|
||||
footer_right = '{}'.format(embedding.step)
|
||||
|
||||
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
||||
captioned_image = insert_image_data_embed(captioned_image, data)
|
||||
|
||||
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
||||
|
||||
image.save(last_saved_image)
|
||||
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
Reference in New Issue
Block a user