mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
moved deepdanbooru to pure pytorch implementation
This commit is contained in:
@@ -1,173 +1,97 @@
|
||||
import os.path
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
import multiprocessing
|
||||
import time
|
||||
import os
|
||||
import re
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
from modules import modelloader, paths, deepbooru_model, devices, images, shared
|
||||
|
||||
re_special = re.compile(r'([\\()])')
|
||||
|
||||
def get_deepbooru_tags(pil_image):
|
||||
"""
|
||||
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
|
||||
try:
|
||||
create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
|
||||
return get_tags_from_process(pil_image)
|
||||
finally:
|
||||
release_process()
|
||||
class DeepDanbooru:
|
||||
def __init__(self):
|
||||
self.model = None
|
||||
|
||||
def load(self):
|
||||
if self.model is not None:
|
||||
return
|
||||
|
||||
OPT_INCLUDE_RANKS = "include_ranks"
|
||||
def create_deepbooru_opts():
|
||||
from modules import shared
|
||||
files = modelloader.load_models(
|
||||
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
|
||||
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
|
||||
ext_filter=".pt",
|
||||
download_name='model-resnet_custom_v3.pt',
|
||||
)
|
||||
|
||||
return {
|
||||
"use_spaces": shared.opts.deepbooru_use_spaces,
|
||||
"use_escape": shared.opts.deepbooru_escape,
|
||||
"alpha_sort": shared.opts.deepbooru_sort_alpha,
|
||||
OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
|
||||
}
|
||||
self.model = deepbooru_model.DeepDanbooruModel()
|
||||
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
|
||||
|
||||
self.model.eval()
|
||||
self.model.to(devices.cpu, devices.dtype)
|
||||
|
||||
def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
|
||||
model, tags = get_deepbooru_tags_model()
|
||||
while True: # while process is running, keep monitoring queue for new image
|
||||
pil_image = queue.get()
|
||||
if pil_image == "QUIT":
|
||||
break
|
||||
else:
|
||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
|
||||
def start(self):
|
||||
self.load()
|
||||
self.model.to(devices.device)
|
||||
|
||||
def stop(self):
|
||||
if not shared.opts.interrogate_keep_models_in_memory:
|
||||
self.model.to(devices.cpu)
|
||||
devices.torch_gc()
|
||||
|
||||
def create_deepbooru_process(threshold, deepbooru_opts):
|
||||
"""
|
||||
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
||||
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
||||
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
|
||||
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
|
||||
the tags.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
context = multiprocessing.get_context("spawn")
|
||||
shared.deepbooru_process_manager = context.Manager()
|
||||
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
||||
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process = context.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
|
||||
shared.deepbooru_process.start()
|
||||
def tag(self, pil_image):
|
||||
self.start()
|
||||
res = self.tag_multi(pil_image)
|
||||
self.stop()
|
||||
|
||||
return res
|
||||
|
||||
def get_tags_from_process(image):
|
||||
from modules import shared
|
||||
def tag_multi(self, pil_image, force_disable_ranks=False):
|
||||
threshold = shared.opts.interrogate_deepbooru_score_threshold
|
||||
use_spaces = shared.opts.deepbooru_use_spaces
|
||||
use_escape = shared.opts.deepbooru_escape
|
||||
alpha_sort = shared.opts.deepbooru_sort_alpha
|
||||
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
|
||||
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process_queue.put(image)
|
||||
while shared.deepbooru_process_return["value"] == -1:
|
||||
time.sleep(0.2)
|
||||
caption = shared.deepbooru_process_return["value"]
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
|
||||
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
|
||||
|
||||
return caption
|
||||
with torch.no_grad(), devices.autocast():
|
||||
x = torch.from_numpy(a).cuda()
|
||||
y = self.model(x)[0].detach().cpu().numpy()
|
||||
|
||||
probability_dict = {}
|
||||
|
||||
def release_process():
|
||||
"""
|
||||
Stops the deepbooru process to return used memory
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
shared.deepbooru_process_queue.put("QUIT")
|
||||
shared.deepbooru_process.join()
|
||||
shared.deepbooru_process_queue = None
|
||||
shared.deepbooru_process = None
|
||||
shared.deepbooru_process_return = None
|
||||
shared.deepbooru_process_manager = None
|
||||
for tag, probability in zip(self.model.tags, y):
|
||||
if probability < threshold:
|
||||
continue
|
||||
|
||||
def get_deepbooru_tags_model():
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
this_folder = os.path.dirname(__file__)
|
||||
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
|
||||
if not os.path.exists(os.path.join(model_path, 'project.json')):
|
||||
# there is no point importing these every time
|
||||
import zipfile
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
load_file_from_url(
|
||||
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
||||
model_path)
|
||||
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
|
||||
zip_ref.extractall(model_path)
|
||||
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
|
||||
|
||||
tags = dd.project.load_tags_from_project(model_path)
|
||||
model = dd.project.load_model_from_project(
|
||||
model_path, compile_model=False
|
||||
)
|
||||
return model, tags
|
||||
|
||||
|
||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
alpha_sort = deepbooru_opts['alpha_sort']
|
||||
use_spaces = deepbooru_opts['use_spaces']
|
||||
use_escape = deepbooru_opts['use_escape']
|
||||
include_ranks = deepbooru_opts['include_ranks']
|
||||
|
||||
width = model.input_shape[2]
|
||||
height = model.input_shape[1]
|
||||
image = np.array(pil_image)
|
||||
image = tf.image.resize(
|
||||
image,
|
||||
size=(height, width),
|
||||
method=tf.image.ResizeMethod.AREA,
|
||||
preserve_aspect_ratio=True,
|
||||
)
|
||||
image = image.numpy() # EagerTensor to np.array
|
||||
image = dd.image.transform_and_pad_image(image, width, height)
|
||||
image = image / 255.0
|
||||
image_shape = image.shape
|
||||
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
|
||||
|
||||
y = model.predict(image)[0]
|
||||
|
||||
result_dict = {}
|
||||
|
||||
for i, tag in enumerate(tags):
|
||||
result_dict[tag] = y[i]
|
||||
|
||||
unsorted_tags_in_theshold = []
|
||||
result_tags_print = []
|
||||
for tag in tags:
|
||||
if result_dict[tag] >= threshold:
|
||||
if tag.startswith("rating:"):
|
||||
continue
|
||||
unsorted_tags_in_theshold.append((result_dict[tag], tag))
|
||||
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
||||
|
||||
# sort tags
|
||||
result_tags_out = []
|
||||
sort_ndx = 0
|
||||
if alpha_sort:
|
||||
sort_ndx = 1
|
||||
probability_dict[tag] = probability
|
||||
|
||||
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
|
||||
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
||||
for weight, tag in unsorted_tags_in_theshold:
|
||||
tag_outformat = tag
|
||||
if use_spaces:
|
||||
tag_outformat = tag_outformat.replace('_', ' ')
|
||||
if use_escape:
|
||||
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
||||
if include_ranks:
|
||||
tag_outformat = f"({tag_outformat}:{weight:.3f})"
|
||||
if alpha_sort:
|
||||
tags = sorted(probability_dict)
|
||||
else:
|
||||
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
|
||||
|
||||
result_tags_out.append(tag_outformat)
|
||||
res = []
|
||||
|
||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||
for tag in tags:
|
||||
probability = probability_dict[tag]
|
||||
tag_outformat = tag
|
||||
if use_spaces:
|
||||
tag_outformat = tag_outformat.replace('_', ' ')
|
||||
if use_escape:
|
||||
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
||||
if include_ranks:
|
||||
tag_outformat = f"({tag_outformat}:{probability:.3f})"
|
||||
|
||||
return ', '.join(result_tags_out)
|
||||
res.append(tag_outformat)
|
||||
|
||||
return ", ".join(res)
|
||||
|
||||
|
||||
model = DeepDanbooru()
|
||||
|
Reference in New Issue
Block a user