train: change filename processing to be more simple and configurable

train: make it possible to make text files with prompts
train: rework scheduler so that there's less repeating code in textual inversion and hypernets
train: move epochs setting to options
This commit is contained in:
AUTOMATIC
2022-10-12 20:49:47 +03:00
parent cc5803603b
commit c3c8eef9fd
7 changed files with 106 additions and 63 deletions

View File

@@ -1,6 +1,12 @@
import tqdm
class LearnSchedule:
class LearnScheduleIterator:
def __init__(self, learn_rate, max_steps, cur_step=0):
"""
specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000
"""
pairs = learn_rate.split(',')
self.rates = []
self.it = 0
@@ -32,3 +38,32 @@ class LearnSchedule:
return self.rates[self.it - 1]
else:
raise StopIteration
class LearnRateScheduler:
def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True):
self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step)
(self.learn_rate, self.end_step) = next(self.schedules)
self.verbose = verbose
if self.verbose:
print(f'Training at rate of {self.learn_rate} until step {self.end_step}')
self.finished = False
def apply(self, optimizer, step_number):
if step_number <= self.end_step:
return
try:
(self.learn_rate, self.end_step) = next(self.schedules)
except Exception:
self.finished = True
return
if self.verbose:
tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}')
for pg in optimizer.param_groups:
pg['lr'] = self.learn_rate