Call weighted_forward during training

This commit is contained in:
Shondoit
2023-01-12 15:34:11 +01:00
parent 21642000b3
commit bc50936745
2 changed files with 4 additions and 2 deletions

View File

@@ -480,6 +480,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
w = batch.weight.to(devices.device, non_blocking=pin_memory)
c = shared.sd_model.cond_stage_model(batch.cond_text)
if is_training_inpainting_model:
@@ -490,7 +491,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
else:
cond = c
loss = shared.sd_model(x, cond)[0] / gradient_step
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
del x
_loss_step += loss.item()