mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
Refactored Metal/mps fixes.
This commit is contained in:
@@ -1,6 +1,3 @@
|
||||
# Metal backend fixes written and placed
|
||||
# into the public domain by Elias Oenal <sd@eliasoenal.com>
|
||||
|
||||
import contextlib
|
||||
import json
|
||||
import math
|
||||
@@ -109,17 +106,19 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
||||
|
||||
# Pytorch currently doesn't handle seeting randomness correctly when the metal backend is used.
|
||||
generator = torch
|
||||
if shared.device.type == 'mps':
|
||||
g = torch.Generator(device='cpu')
|
||||
shared.device_seed_type = 'cpu'
|
||||
generator = torch.Generator(device=shared.device_seed_type)
|
||||
|
||||
subnoise = None
|
||||
if subseeds is not None:
|
||||
subseed = 0 if i >= len(subseeds) else subseeds[i]
|
||||
if shared.device.type == 'mps':
|
||||
g.manual_seed(subseed)
|
||||
subnoise = torch.randn(noise_shape, generator=g, device='cpu').to('mps')
|
||||
else: # cpu or cuda
|
||||
torch.manual_seed(subseed)
|
||||
generator.manual_seed(subseed)
|
||||
|
||||
if shared.device.type != shared.device_seed_type:
|
||||
subnoise = torch.randn(noise_shape, generator=generator, device=shared.device_seed_type).to(shared.device)
|
||||
else:
|
||||
subnoise = torch.randn(noise_shape, device=shared.device)
|
||||
|
||||
# randn results depend on device; gpu and cpu get different results for same seed;
|
||||
@@ -128,12 +127,11 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
# it will break everyone's seeds.
|
||||
# When using the mps backend falling back to the cpu device is needed, since mps currently
|
||||
# does not implement seeding properly.
|
||||
if shared.device.type == 'mps':
|
||||
g.manual_seed(seed)
|
||||
noise = torch.randn(noise_shape, generator=g, device='cpu').to('mps')
|
||||
else: # cpu or cuda
|
||||
torch.manual_seed(seed)
|
||||
x = torch.randn(shape, device=shared.device)
|
||||
generator.manual_seed(seed)
|
||||
if shared.device.type != shared.device_seed_type:
|
||||
noise = torch.randn(noise_shape, generator=generator, device=shared.device_seed_type).to(shared.device)
|
||||
else:
|
||||
noise = torch.randn(noise_shape, device=shared.device)
|
||||
|
||||
if subnoise is not None:
|
||||
#noise = subnoise * subseed_strength + noise * (1 - subseed_strength)
|
||||
@@ -143,12 +141,10 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
#noise = torch.nn.functional.interpolate(noise.unsqueeze(1), size=shape[1:], mode="bilinear").squeeze()
|
||||
# noise_shape = (64, 80)
|
||||
# shape = (64, 72)
|
||||
|
||||
if shared.device.type == 'mps':
|
||||
g.manual_seed(seed)
|
||||
x = torch.randn(shape, generator=g, device='cpu').to('mps')
|
||||
generator.manual_seed(seed)
|
||||
if shared.device.type != shared.device_seed_type:
|
||||
x = torch.randn(shape, generator=generator, device=shared.device_seed_type).to(shared.device)
|
||||
else:
|
||||
torch.manual_seed(seed)
|
||||
x = torch.randn(shape, device=shared.device)
|
||||
dx = (shape[2] - noise_shape[2]) // 2 # -4
|
||||
dy = (shape[1] - noise_shape[1]) // 2
|
||||
@@ -484,10 +480,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
if self.image_mask is not None:
|
||||
init_mask = latent_mask
|
||||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||
precision = np.float64
|
||||
if shared.device.type == 'mps': # mps backend does not support float64
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
||||
else:
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float64), 2, 0) / 255
|
||||
precision = np.float32
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=precision), 2, 0) / 255
|
||||
latmask = latmask[0]
|
||||
latmask = np.around(latmask)
|
||||
latmask = np.tile(latmask[None], (4, 1, 1))
|
||||
|
Reference in New Issue
Block a user