Unify CodeFormer and GFPGAN restoration backends, use Spandrel for GFPGAN

This commit is contained in:
Aarni Koskela
2023-12-25 23:01:02 +02:00
parent b0f5934234
commit b621a63cf6
11 changed files with 302 additions and 228 deletions

View File

@@ -1,126 +1,68 @@
from __future__ import annotations
import logging
import os
import modules.face_restoration
from modules import paths, shared, devices, modelloader, errors
from modules import (
devices,
errors,
face_restoration,
face_restoration_utils,
modelloader,
shared,
)
model_dir = "GFPGAN"
user_path = None
model_path = os.path.join(paths.models_path, model_dir)
model_file_path = None
logger = logging.getLogger(__name__)
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
have_gfpgan = False
loaded_gfpgan_model = None
model_download_name = "GFPGANv1.4.pth"
gfpgan_face_restorer: face_restoration.FaceRestoration | None = None
def gfpgann():
global loaded_gfpgan_model
global model_path
global model_file_path
if loaded_gfpgan_model is not None:
loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan)
return loaded_gfpgan_model
class FaceRestorerGFPGAN(face_restoration_utils.CommonFaceRestoration):
def name(self):
return "GFPGAN"
if gfpgan_constructor is None:
return None
def get_device(self):
return devices.device_gfpgan
models = modelloader.load_models(model_path, model_url, user_path, ext_filter=['.pth'])
def load_net(self) -> None:
for model_path in modelloader.load_models(
model_path=self.model_path,
model_url=model_url,
command_path=self.model_path,
download_name=model_download_name,
ext_filter=['.pth'],
):
if 'GFPGAN' in os.path.basename(model_path):
net = modelloader.load_spandrel_model(
model_path,
device=self.get_device(),
).model
net.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81
return net
raise ValueError("No GFPGAN model found")
if len(models) == 1 and models[0].startswith("http"):
model_file = models[0]
elif len(models) != 0:
gfp_models = []
for item in models:
if 'GFPGAN' in os.path.basename(item):
gfp_models.append(item)
latest_file = max(gfp_models, key=os.path.getctime)
model_file = latest_file
else:
print("Unable to load gfpgan model!")
return None
def restore(self, np_image):
def restore_face(cropped_face_t):
assert self.net is not None
return self.net(cropped_face_t, return_rgb=False)[0]
import facexlib.detection.retinaface
if hasattr(facexlib.detection.retinaface, 'device'):
facexlib.detection.retinaface.device = devices.device_gfpgan
model_file_path = model_file
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
loaded_gfpgan_model = model
return model
def send_model_to(model, device):
model.gfpgan.to(device)
model.face_helper.face_det.to(device)
model.face_helper.face_parse.to(device)
return self.restore_with_helper(np_image, restore_face)
def gfpgan_fix_faces(np_image):
model = gfpgann()
if model is None:
return np_image
send_model_to(model, devices.device_gfpgan)
np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
model.face_helper.clean_all()
if shared.opts.face_restoration_unload:
send_model_to(model, devices.cpu)
if gfpgan_face_restorer:
return gfpgan_face_restorer.restore(np_image)
logger.warning("GFPGAN face restorer not set up")
return np_image
gfpgan_constructor = None
def setup_model(dirname: str) -> None:
global gfpgan_face_restorer
def setup_model(dirname):
try:
os.makedirs(model_path, exist_ok=True)
import gfpgan
import facexlib.detection
import facexlib.parsing
global user_path
global have_gfpgan
global gfpgan_constructor
global model_file_path
facexlib_path = model_path
if dirname is not None:
facexlib_path = dirname
load_file_from_url_orig = gfpgan.utils.load_file_from_url
facex_load_file_from_url_orig = facexlib.detection.load_file_from_url
facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url
def my_load_file_from_url(**kwargs):
return load_file_from_url_orig(**dict(kwargs, model_dir=model_file_path))
def facex_load_file_from_url(**kwargs):
return facex_load_file_from_url_orig(**dict(kwargs, save_dir=facexlib_path, model_dir=None))
def facex_load_file_from_url2(**kwargs):
return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=facexlib_path, model_dir=None))
gfpgan.utils.load_file_from_url = my_load_file_from_url
facexlib.detection.load_file_from_url = facex_load_file_from_url
facexlib.parsing.load_file_from_url = facex_load_file_from_url2
user_path = dirname
have_gfpgan = True
gfpgan_constructor = gfpgan.GFPGANer
class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration):
def name(self):
return "GFPGAN"
def restore(self, np_image):
return gfpgan_fix_faces(np_image)
shared.face_restorers.append(FaceRestorerGFPGAN())
face_restoration_utils.patch_facexlib(dirname)
gfpgan_face_restorer = FaceRestorerGFPGAN(model_path=dirname)
shared.face_restorers.append(gfpgan_face_restorer)
except Exception:
errors.report("Error setting up GFPGAN", exc_info=True)