mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-08 05:12:35 +00:00
Unify CodeFormer and GFPGAN restoration backends, use Spandrel for GFPGAN
This commit is contained in:
@@ -1,126 +1,68 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
|
||||
import modules.face_restoration
|
||||
from modules import paths, shared, devices, modelloader, errors
|
||||
from modules import (
|
||||
devices,
|
||||
errors,
|
||||
face_restoration,
|
||||
face_restoration_utils,
|
||||
modelloader,
|
||||
shared,
|
||||
)
|
||||
|
||||
model_dir = "GFPGAN"
|
||||
user_path = None
|
||||
model_path = os.path.join(paths.models_path, model_dir)
|
||||
model_file_path = None
|
||||
logger = logging.getLogger(__name__)
|
||||
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
|
||||
have_gfpgan = False
|
||||
loaded_gfpgan_model = None
|
||||
model_download_name = "GFPGANv1.4.pth"
|
||||
gfpgan_face_restorer: face_restoration.FaceRestoration | None = None
|
||||
|
||||
|
||||
def gfpgann():
|
||||
global loaded_gfpgan_model
|
||||
global model_path
|
||||
global model_file_path
|
||||
if loaded_gfpgan_model is not None:
|
||||
loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan)
|
||||
return loaded_gfpgan_model
|
||||
class FaceRestorerGFPGAN(face_restoration_utils.CommonFaceRestoration):
|
||||
def name(self):
|
||||
return "GFPGAN"
|
||||
|
||||
if gfpgan_constructor is None:
|
||||
return None
|
||||
def get_device(self):
|
||||
return devices.device_gfpgan
|
||||
|
||||
models = modelloader.load_models(model_path, model_url, user_path, ext_filter=['.pth'])
|
||||
def load_net(self) -> None:
|
||||
for model_path in modelloader.load_models(
|
||||
model_path=self.model_path,
|
||||
model_url=model_url,
|
||||
command_path=self.model_path,
|
||||
download_name=model_download_name,
|
||||
ext_filter=['.pth'],
|
||||
):
|
||||
if 'GFPGAN' in os.path.basename(model_path):
|
||||
net = modelloader.load_spandrel_model(
|
||||
model_path,
|
||||
device=self.get_device(),
|
||||
).model
|
||||
net.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81
|
||||
return net
|
||||
raise ValueError("No GFPGAN model found")
|
||||
|
||||
if len(models) == 1 and models[0].startswith("http"):
|
||||
model_file = models[0]
|
||||
elif len(models) != 0:
|
||||
gfp_models = []
|
||||
for item in models:
|
||||
if 'GFPGAN' in os.path.basename(item):
|
||||
gfp_models.append(item)
|
||||
latest_file = max(gfp_models, key=os.path.getctime)
|
||||
model_file = latest_file
|
||||
else:
|
||||
print("Unable to load gfpgan model!")
|
||||
return None
|
||||
def restore(self, np_image):
|
||||
def restore_face(cropped_face_t):
|
||||
assert self.net is not None
|
||||
return self.net(cropped_face_t, return_rgb=False)[0]
|
||||
|
||||
import facexlib.detection.retinaface
|
||||
|
||||
if hasattr(facexlib.detection.retinaface, 'device'):
|
||||
facexlib.detection.retinaface.device = devices.device_gfpgan
|
||||
model_file_path = model_file
|
||||
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
|
||||
loaded_gfpgan_model = model
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def send_model_to(model, device):
|
||||
model.gfpgan.to(device)
|
||||
model.face_helper.face_det.to(device)
|
||||
model.face_helper.face_parse.to(device)
|
||||
return self.restore_with_helper(np_image, restore_face)
|
||||
|
||||
|
||||
def gfpgan_fix_faces(np_image):
|
||||
model = gfpgann()
|
||||
if model is None:
|
||||
return np_image
|
||||
|
||||
send_model_to(model, devices.device_gfpgan)
|
||||
|
||||
np_image_bgr = np_image[:, :, ::-1]
|
||||
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
np_image = gfpgan_output_bgr[:, :, ::-1]
|
||||
|
||||
model.face_helper.clean_all()
|
||||
|
||||
if shared.opts.face_restoration_unload:
|
||||
send_model_to(model, devices.cpu)
|
||||
|
||||
if gfpgan_face_restorer:
|
||||
return gfpgan_face_restorer.restore(np_image)
|
||||
logger.warning("GFPGAN face restorer not set up")
|
||||
return np_image
|
||||
|
||||
|
||||
gfpgan_constructor = None
|
||||
def setup_model(dirname: str) -> None:
|
||||
global gfpgan_face_restorer
|
||||
|
||||
|
||||
def setup_model(dirname):
|
||||
try:
|
||||
os.makedirs(model_path, exist_ok=True)
|
||||
import gfpgan
|
||||
import facexlib.detection
|
||||
import facexlib.parsing
|
||||
|
||||
global user_path
|
||||
global have_gfpgan
|
||||
global gfpgan_constructor
|
||||
global model_file_path
|
||||
|
||||
facexlib_path = model_path
|
||||
|
||||
if dirname is not None:
|
||||
facexlib_path = dirname
|
||||
|
||||
load_file_from_url_orig = gfpgan.utils.load_file_from_url
|
||||
facex_load_file_from_url_orig = facexlib.detection.load_file_from_url
|
||||
facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url
|
||||
|
||||
def my_load_file_from_url(**kwargs):
|
||||
return load_file_from_url_orig(**dict(kwargs, model_dir=model_file_path))
|
||||
|
||||
def facex_load_file_from_url(**kwargs):
|
||||
return facex_load_file_from_url_orig(**dict(kwargs, save_dir=facexlib_path, model_dir=None))
|
||||
|
||||
def facex_load_file_from_url2(**kwargs):
|
||||
return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=facexlib_path, model_dir=None))
|
||||
|
||||
gfpgan.utils.load_file_from_url = my_load_file_from_url
|
||||
facexlib.detection.load_file_from_url = facex_load_file_from_url
|
||||
facexlib.parsing.load_file_from_url = facex_load_file_from_url2
|
||||
user_path = dirname
|
||||
have_gfpgan = True
|
||||
gfpgan_constructor = gfpgan.GFPGANer
|
||||
|
||||
class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration):
|
||||
def name(self):
|
||||
return "GFPGAN"
|
||||
|
||||
def restore(self, np_image):
|
||||
return gfpgan_fix_faces(np_image)
|
||||
|
||||
shared.face_restorers.append(FaceRestorerGFPGAN())
|
||||
face_restoration_utils.patch_facexlib(dirname)
|
||||
gfpgan_face_restorer = FaceRestorerGFPGAN(model_path=dirname)
|
||||
shared.face_restorers.append(gfpgan_face_restorer)
|
||||
except Exception:
|
||||
errors.report("Error setting up GFPGAN", exc_info=True)
|
||||
|
Reference in New Issue
Block a user