mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
Organized the settings and UI of soft inpainting to allow for toggling the feature, and centralizes default values to reduce the amount of copy-pasta.
This commit is contained in:
@@ -6,6 +6,7 @@ import modules.shared as shared
|
||||
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
||||
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
|
||||
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
|
||||
import modules.soft_inpainting as si
|
||||
|
||||
|
||||
def catenate_conds(conds):
|
||||
@@ -43,9 +44,7 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.model_wrap = None
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.mask_blend_power = 1
|
||||
self.mask_blend_scale = 0.5
|
||||
self.inpaint_detail_preservation = 4
|
||||
self.soft_inpainting: si.SoftInpaintingParameters = None
|
||||
self.init_latent = None
|
||||
self.steps = None
|
||||
"""number of steps as specified by user in UI"""
|
||||
@@ -95,7 +94,8 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.sampler.sampler_extra_args['uncond'] = uc
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
|
||||
def latent_blend(a, b, t):
|
||||
def latent_blend(a, b, t, one_minus_t=None):
|
||||
|
||||
"""
|
||||
Interpolates two latent image representations according to the parameter t,
|
||||
where the interpolated vectors' magnitudes are also interpolated separately.
|
||||
@@ -104,7 +104,11 @@ class CFGDenoiser(torch.nn.Module):
|
||||
"""
|
||||
# NOTE: We use inplace operations wherever possible.
|
||||
|
||||
one_minus_t = 1 - t
|
||||
if one_minus_t is None:
|
||||
one_minus_t = 1 - t
|
||||
|
||||
if self.soft_inpainting is None:
|
||||
return a * one_minus_t + b * t
|
||||
|
||||
# Linearly interpolate the image vectors.
|
||||
a_scaled = a * one_minus_t
|
||||
@@ -119,10 +123,10 @@ class CFGDenoiser(torch.nn.Module):
|
||||
current_magnitude = torch.norm(image_interp, p=2, dim=1).to(torch.float64).add_(0.00001)
|
||||
|
||||
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
|
||||
a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(self.inpaint_detail_preservation) * one_minus_t
|
||||
b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(self.inpaint_detail_preservation) * t
|
||||
a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * one_minus_t
|
||||
b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * t
|
||||
desired_magnitude = a_magnitude
|
||||
desired_magnitude.add_(b_magnitude).pow_(1 / self.inpaint_detail_preservation)
|
||||
desired_magnitude.add_(b_magnitude).pow_(1 / self.soft_inpainting.inpaint_detail_preservation)
|
||||
del a_magnitude, b_magnitude, one_minus_t
|
||||
|
||||
# Change the linearly interpolated image vectors' magnitudes to the value we want.
|
||||
@@ -156,7 +160,10 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
NOTE: "mask" is not used
|
||||
"""
|
||||
return torch.pow(nmask, (_sigma ** self.mask_blend_power) * self.mask_blend_scale)
|
||||
if self.soft_inpainting is None:
|
||||
return nmask
|
||||
|
||||
return torch.pow(nmask, (_sigma ** self.soft_inpainting.mask_blend_power) * self.soft_inpainting.mask_blend_scale)
|
||||
|
||||
if state.interrupted or state.skipped:
|
||||
raise sd_samplers_common.InterruptedException
|
||||
@@ -176,7 +183,10 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
# Blend in the original latents (before)
|
||||
if self.mask_before_denoising and self.mask is not None:
|
||||
x = latent_blend(self.init_latent, x, get_modified_nmask(self.nmask, sigma))
|
||||
if self.soft_inpainting is None:
|
||||
x = latent_blend(self.init_latent, x, self.nmask, self.mask)
|
||||
else:
|
||||
x = latent_blend(self.init_latent, x, get_modified_nmask(self.nmask, sigma))
|
||||
|
||||
batch_size = len(conds_list)
|
||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||
@@ -279,7 +289,10 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
# Blend in the original latents (after)
|
||||
if not self.mask_before_denoising and self.mask is not None:
|
||||
denoised = latent_blend(self.init_latent, denoised, get_modified_nmask(self.nmask, sigma))
|
||||
if self.soft_inpainting is None:
|
||||
denoised = latent_blend(self.init_latent, denoised, self.nmask, self.mask)
|
||||
else:
|
||||
denoised = latent_blend(self.init_latent, denoised, get_modified_nmask(self.nmask, sigma))
|
||||
|
||||
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
|
||||
|
||||
|
Reference in New Issue
Block a user