mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
medvram support for SD3
This commit is contained in:
@@ -120,6 +120,9 @@ class SD3Cond(torch.nn.Module):
|
||||
def encode_embedding_init_text(self, init_text, nvpt):
|
||||
return torch.tensor([[0]], device=devices.device) # XXX
|
||||
|
||||
def medvram_modules(self):
|
||||
return [self.clip_g, self.clip_l, self.t5xxl]
|
||||
|
||||
|
||||
class SD3Denoiser(k_diffusion.external.DiscreteSchedule):
|
||||
def __init__(self, inner_model, sigmas):
|
||||
@@ -163,7 +166,7 @@ class SD3Inferencer(torch.nn.Module):
|
||||
return self.cond_stage_model(batch)
|
||||
|
||||
def apply_model(self, x, t, cond):
|
||||
return self.model.apply_model(x, t, c_crossattn=cond['crossattn'], y=cond['vector'])
|
||||
return self.model(x, t, c_crossattn=cond['crossattn'], y=cond['vector'])
|
||||
|
||||
def decode_first_stage(self, latent):
|
||||
latent = self.latent_format.process_out(latent)
|
||||
@@ -175,3 +178,10 @@ class SD3Inferencer(torch.nn.Module):
|
||||
|
||||
def create_denoiser(self):
|
||||
return SD3Denoiser(self, self.model.model_sampling.sigmas)
|
||||
|
||||
def medvram_fields(self):
|
||||
return [
|
||||
(self, 'first_stage_model'),
|
||||
(self, 'cond_stage_model'),
|
||||
(self, 'model'),
|
||||
]
|
||||
|
Reference in New Issue
Block a user