move some settings to the new Optimization page

add slider for token merging for img2img
rework StableDiffusionProcessing to have the token_merging_ratio field
fix a bug with applying png optimizations for live previews when they shouldn't be applied
This commit is contained in:
AUTOMATIC
2023-05-17 20:22:38 +03:00
parent f6c06e3ed2
commit 9fd6c1e343
4 changed files with 55 additions and 45 deletions

View File

@@ -29,12 +29,6 @@ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
import tomesd
# add a logger for the processing module
logger = logging.getLogger(__name__)
# manually set output level here since there is no option to do so yet through launch options
# logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(name)s %(message)s')
# some of those options should not be changed at all because they would break the model, so I removed them from options.
@@ -156,6 +150,8 @@ class StableDiffusionProcessing:
self.override_settings_restore_afterwards = override_settings_restore_afterwards
self.is_using_inpainting_conditioning = False
self.disable_extra_networks = False
self.token_merging_ratio = 0
self.token_merging_ratio_hr = 0
if not seed_enable_extras:
self.subseed = -1
@@ -171,6 +167,7 @@ class StableDiffusionProcessing:
self.all_subseeds = None
self.iteration = 0
self.is_hr_pass = False
self.sampler = None
@property
@@ -280,6 +277,12 @@ class StableDiffusionProcessing:
def close(self):
self.sampler = None
def get_token_merging_ratio(self, for_hr=False):
if for_hr:
return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
return self.token_merging_ratio or opts.token_merging_ratio
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
@@ -309,6 +312,8 @@ class Processed:
self.styles = p.styles
self.job_timestamp = state.job_timestamp
self.clip_skip = opts.CLIP_stop_at_last_layers
self.token_merging_ratio = p.token_merging_ratio
self.token_merging_ratio_hr = p.token_merging_ratio_hr
self.eta = p.eta
self.ddim_discretize = p.ddim_discretize
@@ -367,6 +372,9 @@ class Processed:
def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
def get_token_merging_ratio(self, for_hr=False):
return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
def slerp(val, low, high):
@@ -480,6 +488,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
enable_hr = getattr(p, 'enable_hr', False)
token_merging_ratio = p.get_token_merging_ratio()
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
uses_ensd = opts.eta_noise_seed_delta != 0
if uses_ensd:
@@ -502,8 +512,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
"Token merging ratio": None if opts.token_merging_ratio == 0 else opts.token_merging_ratio,
"Token merging ratio hr": None if not enable_hr or opts.token_merging_ratio_hr == 0 else opts.token_merging_ratio_hr,
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
@@ -536,17 +546,12 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if k == 'sd_vae':
sd_vae.reload_vae_weights()
if opts.token_merging_ratio > 0:
sd_models.apply_token_merging(sd_model=p.sd_model, hr=False)
logger.debug(f"Token merging applied to first pass. Ratio: '{opts.token_merging_ratio}'")
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
res = process_images_inner(p)
finally:
# undo model optimizations made by tomesd
if opts.token_merging_ratio > 0:
tomesd.remove_patch(p.sd_model)
logger.debug('Token merging model optimizations removed')
sd_models.apply_token_merging(p.sd_model, 0)
# restore opts to original state
if p.override_settings_restore_afterwards:
@@ -996,21 +1001,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None
devices.torch_gc()
# apply token merging optimizations from tomesd for high-res pass
if opts.token_merging_ratio_hr > 0:
# in case the user has used separate merge ratios
if opts.token_merging_ratio > 0:
tomesd.remove_patch(self.sd_model)
logger.debug('Adjusting token merging ratio for high-res pass')
sd_models.apply_token_merging(sd_model=self.sd_model, hr=True)
logger.debug(f"Applied token merging for high-res pass. Ratio: '{opts.token_merging_ratio_hr}'")
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
if opts.token_merging_ratio_hr > 0 or opts.token_merging_ratio > 0:
tomesd.remove_patch(self.sd_model)
logger.debug('Removed token merging optimizations from model')
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
self.is_hr_pass = False
@@ -1173,3 +1168,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
devices.torch_gc()
return samples
def get_token_merging_ratio(self, for_hr=False):
return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio