Merge branch 'master' into tensorboard

This commit is contained in:
AUTOMATIC1111
2023-01-13 14:57:38 +03:00
committed by GitHub
148 changed files with 13968 additions and 3805 deletions

View File

@@ -0,0 +1,341 @@
import cv2
import requests
import os
from collections import defaultdict
from math import log, sqrt
import numpy as np
from PIL import Image, ImageDraw
GREEN = "#0F0"
BLUE = "#00F"
RED = "#F00"
def crop_image(im, settings):
""" Intelligently crop an image to the subject matter """
scale_by = 1
if is_landscape(im.width, im.height):
scale_by = settings.crop_height / im.height
elif is_portrait(im.width, im.height):
scale_by = settings.crop_width / im.width
elif is_square(im.width, im.height):
if is_square(settings.crop_width, settings.crop_height):
scale_by = settings.crop_width / im.width
elif is_landscape(settings.crop_width, settings.crop_height):
scale_by = settings.crop_width / im.width
elif is_portrait(settings.crop_width, settings.crop_height):
scale_by = settings.crop_height / im.height
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
im_debug = im.copy()
focus = focal_point(im_debug, settings)
# take the focal point and turn it into crop coordinates that try to center over the focal
# point but then get adjusted back into the frame
y_half = int(settings.crop_height / 2)
x_half = int(settings.crop_width / 2)
x1 = focus.x - x_half
if x1 < 0:
x1 = 0
elif x1 + settings.crop_width > im.width:
x1 = im.width - settings.crop_width
y1 = focus.y - y_half
if y1 < 0:
y1 = 0
elif y1 + settings.crop_height > im.height:
y1 = im.height - settings.crop_height
x2 = x1 + settings.crop_width
y2 = y1 + settings.crop_height
crop = [x1, y1, x2, y2]
results = []
results.append(im.crop(tuple(crop)))
if settings.annotate_image:
d = ImageDraw.Draw(im_debug)
rect = list(crop)
rect[2] -= 1
rect[3] -= 1
d.rectangle(rect, outline=GREEN)
results.append(im_debug)
if settings.destop_view_image:
im_debug.show()
return results
def focal_point(im, settings):
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
pois = []
weight_pref_total = 0
if len(corner_points) > 0:
weight_pref_total += settings.corner_points_weight
if len(entropy_points) > 0:
weight_pref_total += settings.entropy_points_weight
if len(face_points) > 0:
weight_pref_total += settings.face_points_weight
corner_centroid = None
if len(corner_points) > 0:
corner_centroid = centroid(corner_points)
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
pois.append(corner_centroid)
entropy_centroid = None
if len(entropy_points) > 0:
entropy_centroid = centroid(entropy_points)
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
pois.append(entropy_centroid)
face_centroid = None
if len(face_points) > 0:
face_centroid = centroid(face_points)
face_centroid.weight = settings.face_points_weight / weight_pref_total
pois.append(face_centroid)
average_point = poi_average(pois, settings)
if settings.annotate_image:
d = ImageDraw.Draw(im)
max_size = min(im.width, im.height) * 0.07
if corner_centroid is not None:
color = BLUE
box = corner_centroid.bounding(max_size * corner_centroid.weight)
d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color)
d.ellipse(box, outline=color)
if len(corner_points) > 1:
for f in corner_points:
d.rectangle(f.bounding(4), outline=color)
if entropy_centroid is not None:
color = "#ff0"
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color)
d.ellipse(box, outline=color)
if len(entropy_points) > 1:
for f in entropy_points:
d.rectangle(f.bounding(4), outline=color)
if face_centroid is not None:
color = RED
box = face_centroid.bounding(max_size * face_centroid.weight)
d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color)
d.ellipse(box, outline=color)
if len(face_points) > 1:
for f in face_points:
d.rectangle(f.bounding(4), outline=color)
d.ellipse(average_point.bounding(max_size), outline=GREEN)
return average_point
def image_face_points(im, settings):
if settings.dnn_model_path is not None:
detector = cv2.FaceDetectorYN.create(
settings.dnn_model_path,
"",
(im.width, im.height),
0.9, # score threshold
0.3, # nms threshold
5000 # keep top k before nms
)
faces = detector.detect(np.array(im))
results = []
if faces[1] is not None:
for face in faces[1]:
x = face[0]
y = face[1]
w = face[2]
h = face[3]
results.append(
PointOfInterest(
int(x + (w * 0.5)), # face focus left/right is center
int(y + (h * 0.33)), # face focus up/down is close to the top of the head
size = w,
weight = 1/len(faces[1])
)
)
return results
else:
np_im = np.array(im)
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
tries = [
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
]
for t in tries:
classifier = cv2.CascadeClassifier(t[0])
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
try:
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
except:
continue
if len(faces) > 0:
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
return []
def image_corner_points(im, settings):
grayscale = im.convert("L")
# naive attempt at preventing focal points from collecting at watermarks near the bottom
gd = ImageDraw.Draw(grayscale)
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
np_im = np.array(grayscale)
points = cv2.goodFeaturesToTrack(
np_im,
maxCorners=100,
qualityLevel=0.04,
minDistance=min(grayscale.width, grayscale.height)*0.06,
useHarrisDetector=False,
)
if points is None:
return []
focal_points = []
for point in points:
x, y = point.ravel()
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
return focal_points
def image_entropy_points(im, settings):
landscape = im.height < im.width
portrait = im.height > im.width
if landscape:
move_idx = [0, 2]
move_max = im.size[0]
elif portrait:
move_idx = [1, 3]
move_max = im.size[1]
else:
return []
e_max = 0
crop_current = [0, 0, settings.crop_width, settings.crop_height]
crop_best = crop_current
while crop_current[move_idx[1]] < move_max:
crop = im.crop(tuple(crop_current))
e = image_entropy(crop)
if (e > e_max):
e_max = e
crop_best = list(crop_current)
crop_current[move_idx[0]] += 4
crop_current[move_idx[1]] += 4
x_mid = int(crop_best[0] + settings.crop_width/2)
y_mid = int(crop_best[1] + settings.crop_height/2)
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
def image_entropy(im):
# greyscale image entropy
# band = np.asarray(im.convert("L"))
band = np.asarray(im.convert("1"), dtype=np.uint8)
hist, _ = np.histogram(band, bins=range(0, 256))
hist = hist[hist > 0]
return -np.log2(hist / hist.sum()).sum()
def centroid(pois):
x = [poi.x for poi in pois]
y = [poi.y for poi in pois]
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
def poi_average(pois, settings):
weight = 0.0
x = 0.0
y = 0.0
for poi in pois:
weight += poi.weight
x += poi.x * poi.weight
y += poi.y * poi.weight
avg_x = round(weight and x / weight)
avg_y = round(weight and y / weight)
return PointOfInterest(avg_x, avg_y)
def is_landscape(w, h):
return w > h
def is_portrait(w, h):
return h > w
def is_square(w, h):
return w == h
def download_and_cache_models(dirname):
download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
model_file_name = 'face_detection_yunet.onnx'
if not os.path.exists(dirname):
os.makedirs(dirname)
cache_file = os.path.join(dirname, model_file_name)
if not os.path.exists(cache_file):
print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
response = requests.get(download_url)
with open(cache_file, "wb") as f:
f.write(response.content)
if os.path.exists(cache_file):
return cache_file
return None
class PointOfInterest:
def __init__(self, x, y, weight=1.0, size=10):
self.x = x
self.y = y
self.weight = weight
self.size = size
def bounding(self, size):
return [
self.x - size//2,
self.y - size//2,
self.x + size//2,
self.y + size//2
]
class Settings:
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
self.crop_width = crop_width
self.crop_height = crop_height
self.corner_points_weight = corner_points_weight
self.entropy_points_weight = entropy_points_weight
self.face_points_weight = face_points_weight
self.annotate_image = annotate_image
self.destop_view_image = False
self.dnn_model_path = dnn_model_path

View File

@@ -3,35 +3,38 @@ import numpy as np
import PIL
import torch
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data import Dataset, DataLoader, Sampler
from torchvision import transforms
from collections import defaultdict
from random import shuffle, choices
import random
import tqdm
from modules import devices, shared
import re
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
class DatasetEntry:
def __init__(self, filename=None, latent=None, filename_text=None):
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
self.filename = filename
self.latent = latent
self.filename_text = filename_text
self.cond = None
self.cond_text = None
self.latent_dist = latent_dist
self.latent_sample = latent_sample
self.cond = cond
self.cond_text = cond_text
self.pixel_values = pixel_values
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token
self.batch_size = batch_size
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.dataset = []
@@ -42,14 +45,23 @@ class PersonalizedBase(Dataset):
self.lines = lines
assert data_root, 'dataset directory not specified'
cond_model = shared.sd_model.cond_stage_model
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
self.shuffle_tags = shuffle_tags
self.tag_drop_out = tag_drop_out
groups = defaultdict(list)
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
if shared.state.interrupted:
raise Exception("interrupted")
try:
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
image = Image.open(path).convert('RGB')
if not varsize:
image = image.resize((width, height), PIL.Image.BICUBIC)
except Exception:
continue
@@ -69,53 +81,136 @@ class PersonalizedBase(Dataset):
npimage = np.array(image).astype(np.uint8)
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32)
torchdata = torch.moveaxis(torchdata, 2, 0)
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
latent_sample = None
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
init_latent = init_latent.to(devices.cpu)
with devices.autocast():
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
latent_sampling_method = "once"
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
elif latent_sampling_method == "deterministic":
# Works only for DiagonalGaussianDistribution
latent_dist.std = 0
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
elif latent_sampling_method == "random":
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
if include_cond:
if not (self.tag_drop_out != 0 or self.shuffle_tags):
entry.cond_text = self.create_text(filename_text)
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
with devices.autocast():
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
groups[image.size].append(len(self.dataset))
self.dataset.append(entry)
del torchdata
del latent_dist
del latent_sample
assert len(self.dataset) > 1, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size
self.length = len(self.dataset)
self.groups = list(groups.values())
assert self.length > 0, "No images have been found in the dataset."
self.batch_size = min(batch_size, self.length)
self.gradient_step = min(gradient_step, self.length // self.batch_size)
self.latent_sampling_method = latent_sampling_method
self.initial_indexes = np.arange(len(self.dataset))
self.indexes = None
self.shuffle()
def shuffle(self):
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
if len(groups) > 1:
print("Buckets:")
for (w, h), ids in sorted(groups.items(), key=lambda x: x[0]):
print(f" {w}x{h}: {len(ids)}")
print()
def create_text(self, filename_text):
text = random.choice(self.lines)
tags = filename_text.split(',')
if self.tag_drop_out != 0:
tags = [t for t in tags if random.random() > self.tag_drop_out]
if self.shuffle_tags:
random.shuffle(tags)
text = text.replace("[filewords]", ','.join(tags))
text = text.replace("[name]", self.placeholder_token)
text = text.replace("[filewords]", filename_text)
return text
def __len__(self):
return self.length
def __getitem__(self, i):
res = []
entry = self.dataset[i]
if self.tag_drop_out != 0 or self.shuffle_tags:
entry.cond_text = self.create_text(entry.filename_text)
if self.latent_sampling_method == "random":
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
return entry
for j in range(self.batch_size):
position = i * self.batch_size + j
if position % len(self.indexes) == 0:
self.shuffle()
index = self.indexes[position % len(self.indexes)]
entry = self.dataset[index]
class GroupedBatchSampler(Sampler):
def __init__(self, data_source: PersonalizedBase, batch_size: int):
super().__init__(data_source)
if entry.cond is None:
entry.cond_text = self.create_text(entry.filename_text)
n = len(data_source)
self.groups = data_source.groups
self.len = n_batch = n // batch_size
expected = [len(g) / n * n_batch * batch_size for g in data_source.groups]
self.base = [int(e) // batch_size for e in expected]
self.n_rand_batches = nrb = n_batch - sum(self.base)
self.probs = [e%batch_size/nrb/batch_size if nrb>0 else 0 for e in expected]
self.batch_size = batch_size
res.append(entry)
def __len__(self):
return self.len
return res
def __iter__(self):
b = self.batch_size
for g in self.groups:
shuffle(g)
batches = []
for g in self.groups:
batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b))
for _ in range(self.n_rand_batches):
rand_group = choices(self.groups, self.probs)[0]
batches.append(choices(rand_group, k=b))
shuffle(batches)
yield from batches
class PersonalizedDataLoader(DataLoader):
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory)
if latent_sampling_method == "random":
self.collate_fn = collate_wrapper_random
else:
self.collate_fn = collate_wrapper
class BatchLoader:
def __init__(self, data):
self.cond_text = [entry.cond_text for entry in data]
self.cond = [entry.cond for entry in data]
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
#self.emb_index = [entry.emb_index for entry in data]
#print(self.latent_sample.device)
def pin_memory(self):
self.latent_sample = self.latent_sample.pin_memory()
return self
def collate_wrapper(batch):
return BatchLoader(batch)
class BatchLoaderRandom(BatchLoader):
def __init__(self, data):
super().__init__(data)
def pin_memory(self):
return self
def collate_wrapper_random(batch):
return BatchLoaderRandom(batch)

View File

@@ -5,6 +5,7 @@ import zlib
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
from fonts.ttf import Roboto
import torch
from modules.shared import opts
class EmbeddingEncoder(json.JSONEncoder):
@@ -75,10 +76,10 @@ def insert_image_data_embed(image, data):
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
next_size = next_size + ((h*d)-(next_size % (h*d)))
data_np_low.resize(next_size)
data_np_low = np.resize(data_np_low, next_size)
data_np_low = data_np_low.reshape((h, -1, d))
data_np_high.resize(next_size)
data_np_high = np.resize(data_np_high, next_size)
data_np_high = data_np_high.reshape((h, -1, d))
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
@@ -133,7 +134,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
from math import cos
image = srcimage.copy()
fontsize = 32
if textfont is None:
try:
textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
@@ -150,7 +151,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
draw = ImageDraw.Draw(image)
fontsize = 32
font = ImageFont.truetype(textfont, fontsize)
padding = 10

View File

@@ -4,30 +4,37 @@ import tqdm
class LearnScheduleIterator:
def __init__(self, learn_rate, max_steps, cur_step=0):
"""
specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000
specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000
"""
pairs = learn_rate.split(',')
self.rates = []
self.it = 0
self.maxit = 0
for i, pair in enumerate(pairs):
tmp = pair.split(':')
if len(tmp) == 2:
step = int(tmp[1])
if step > cur_step:
self.rates.append((float(tmp[0]), min(step, max_steps)))
self.maxit += 1
if step > max_steps:
try:
for i, pair in enumerate(pairs):
if not pair.strip():
continue
tmp = pair.split(':')
if len(tmp) == 2:
step = int(tmp[1])
if step > cur_step:
self.rates.append((float(tmp[0]), min(step, max_steps)))
self.maxit += 1
if step > max_steps:
return
elif step == -1:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
elif step == -1:
else:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
else:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
assert self.rates
except (ValueError, AssertionError):
raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.')
def __iter__(self):
return self
@@ -51,14 +58,19 @@ class LearnRateScheduler:
self.finished = False
def apply(self, optimizer, step_number):
if step_number <= self.end_step:
return
def step(self, step_number):
if step_number < self.end_step:
return False
try:
(self.learn_rate, self.end_step) = next(self.schedules)
except Exception:
except StopIteration:
self.finished = True
return False
return True
def apply(self, optimizer, step_number):
if not self.step(step_number):
return
if self.verbose:

View File

@@ -0,0 +1,24 @@
import datetime
import json
import os
saved_params_shared = {"model_name", "model_hash", "initial_step", "num_of_dataset_images", "learn_rate", "batch_size", "clip_grad_mode", "clip_grad_value", "gradient_step", "data_root", "log_directory", "training_width", "training_height", "steps", "create_image_every", "template_file"}
saved_params_ti = {"embedding_name", "num_vectors_per_token", "save_embedding_every", "save_image_with_stored_embedding"}
saved_params_hypernet = {"hypernetwork_name", "layer_structure", "activation_func", "weight_init", "add_layer_norm", "use_dropout", "save_hypernetwork_every"}
saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet
saved_params_previews = {"preview_prompt", "preview_negative_prompt", "preview_steps", "preview_sampler_index", "preview_cfg_scale", "preview_seed", "preview_width", "preview_height"}
def save_settings_to_file(log_directory, all_params):
now = datetime.datetime.now()
params = {"datetime": now.strftime("%Y-%m-%d %H:%M:%S")}
keys = saved_params_all
if all_params.get('preview_from_txt2img'):
keys = keys | saved_params_previews
params.update({k: v for k, v in all_params.items() if k in keys})
filename = f'settings-{now.strftime("%Y-%m-%d-%H-%M-%S")}.json'
with open(os.path.join(log_directory, filename), "w") as file:
json.dump(params, file, indent=4)

View File

@@ -1,27 +1,26 @@
import os
from PIL import Image, ImageOps
import math
import platform
import sys
import tqdm
import time
from modules import shared, images
from modules import shared, images, deepbooru
from modules.paths import models_path
from modules.shared import opts, cmd_opts
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
from modules.textual_inversion import autocrop
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
try:
if process_caption:
shared.interrogator.load()
if process_caption_deepbooru:
db_opts = deepbooru.create_deepbooru_opts()
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
deepbooru.model.start()
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug)
finally:
@@ -29,88 +28,174 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
shared.interrogator.send_blip_to_ram()
if process_caption_deepbooru:
deepbooru.release_process()
deepbooru.model.stop()
def listfiles(dirname):
return os.listdir(dirname)
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
class PreprocessParams:
src = None
dstdir = None
subindex = 0
flip = False
process_caption = False
process_caption_deepbooru = False
preprocess_txt_action = None
def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None):
caption = ""
if params.process_caption:
caption += shared.interrogator.generate_caption(image)
if params.process_caption_deepbooru:
if len(caption) > 0:
caption += ", "
caption += deepbooru.model.tag_multi(image)
filename_part = params.src
filename_part = os.path.splitext(filename_part)[0]
filename_part = os.path.basename(filename_part)
basename = f"{index:05}-{params.subindex}-{filename_part}"
image.save(os.path.join(params.dstdir, f"{basename}.png"))
if params.preprocess_txt_action == 'prepend' and existing_caption:
caption = existing_caption + ' ' + caption
elif params.preprocess_txt_action == 'append' and existing_caption:
caption = caption + ' ' + existing_caption
elif params.preprocess_txt_action == 'copy' and existing_caption:
caption = existing_caption
caption = caption.strip()
if len(caption) > 0:
with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
params.subindex += 1
def save_pic(image, index, params, existing_caption=None):
save_pic_with_caption(image, index, params, existing_caption=existing_caption)
if params.flip:
save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption)
def split_pic(image, inverse_xy, width, height, overlap_ratio):
if inverse_xy:
from_w, from_h = image.height, image.width
to_w, to_h = height, width
else:
from_w, from_h = image.width, image.height
to_w, to_h = width, height
h = from_h * to_w // from_w
if inverse_xy:
image = image.resize((h, to_w))
else:
image = image.resize((to_w, h))
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
y_step = (h - to_h) / (split_count - 1)
for i in range(split_count):
y = int(y_step * i)
if inverse_xy:
splitted = image.crop((y, 0, y + to_h, to_w))
else:
splitted = image.crop((0, y, to_w, y + to_h))
yield splitted
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
width = process_width
height = process_height
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
split_threshold = max(0.0, min(1.0, split_threshold))
overlap_ratio = max(0.0, min(0.9, overlap_ratio))
assert src != dst, 'same directory specified as source and destination'
os.makedirs(dst, exist_ok=True)
files = os.listdir(src)
files = listfiles(src)
shared.state.job = "preprocess"
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
def save_pic_with_caption(image, index):
caption = ""
params = PreprocessParams()
params.dstdir = dst
params.flip = process_flip
params.process_caption = process_caption
params.process_caption_deepbooru = process_caption_deepbooru
params.preprocess_txt_action = preprocess_txt_action
if process_caption:
caption += shared.interrogator.generate_caption(image)
if process_caption_deepbooru:
if len(caption) > 0:
caption += ", "
caption += deepbooru.get_tags_from_process(image)
filename_part = filename
filename_part = os.path.splitext(filename_part)[0]
filename_part = os.path.basename(filename_part)
basename = f"{index:05}-{subindex[0]}-{filename_part}"
image.save(os.path.join(dst, f"{basename}.png"))
if len(caption) > 0:
with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
subindex[0] += 1
def save_pic(image, index):
save_pic_with_caption(image, index)
if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index)
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
pbar = tqdm.tqdm(files)
for index, imagefile in enumerate(pbar):
params.subindex = 0
filename = os.path.join(src, imagefile)
try:
img = Image.open(filename).convert("RGB")
except Exception:
continue
description = f"Preprocessing [Image {index}/{len(files)}]"
pbar.set_description(description)
shared.state.textinfo = description
params.src = filename
existing_caption = None
existing_caption_filename = os.path.splitext(filename)[0] + '.txt'
if os.path.exists(existing_caption_filename):
with open(existing_caption_filename, 'r', encoding="utf8") as file:
existing_caption = file.read()
if shared.state.interrupted:
break
ratio = img.height / img.width
is_tall = ratio > 1.35
is_wide = ratio < 1 / 1.35
if process_split and is_tall:
img = img.resize((width, height * img.height // img.width))
top = img.crop((0, 0, width, height))
save_pic(top, index)
bot = img.crop((0, img.height - height, width, img.height))
save_pic(bot, index)
elif process_split and is_wide:
img = img.resize((width * img.width // img.height, height))
left = img.crop((0, 0, width, height))
save_pic(left, index)
right = img.crop((img.width - width, 0, img.width, height))
save_pic(right, index)
if img.height > img.width:
ratio = (img.width * height) / (img.height * width)
inverse_xy = False
else:
ratio = (img.height * width) / (img.width * height)
inverse_xy = True
process_default_resize = True
if process_split and ratio < 1.0 and ratio <= split_threshold:
for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio):
save_pic(splitted, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_focal_crop and img.height != img.width:
dnn_model_path = None
try:
dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv"))
except Exception as e:
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)
autocrop_settings = autocrop.Settings(
crop_width = width,
crop_height = height,
face_points_weight = process_focal_crop_face_weight,
entropy_points_weight = process_focal_crop_entropy_weight,
corner_points_weight = process_focal_crop_edges_weight,
annotate_image = process_focal_crop_debug,
dnn_model_path = dnn_model_path,
)
for focal in autocrop.crop_image(img, autocrop_settings):
save_pic(focal, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_default_resize:
img = images.resize_image(1, img, width, height)
save_pic(img, index)
save_pic(img, index, params, existing_caption=existing_caption)
shared.state.nextjob()

View File

@@ -1,32 +1,54 @@
import os
import sys
import traceback
import inspect
from collections import namedtuple
import torch
import tqdm
import html
import datetime
import csv
import numpy as np
import safetensors.torch
from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter
from modules import shared, devices, sd_hijack, processing, sd_models
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
insert_image_data_embed, extract_image_data_embed,
caption_image_overlay)
from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
from modules.textual_inversion.logging import save_settings_to_file
TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"])
textual_inversion_templates = {}
def list_textual_inversion_templates():
textual_inversion_templates.clear()
for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
for fn in fns:
path = os.path.join(root, fn)
textual_inversion_templates[fn] = TextualInversionTemplate(fn, path)
return textual_inversion_templates
class Embedding:
def __init__(self, vec, name, step=None):
self.vec = vec
self.name = name
self.step = step
self.shape = None
self.vectors = 0
self.cached_checksum = None
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.optimizer_state_dict = None
def save(self, filename):
embedding_data = {
@@ -40,6 +62,13 @@ class Embedding:
torch.save(embedding_data, filename)
if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
optimizer_saved_dict = {
'hash': self.checksum(),
'optimizer_state_dict': self.optimizer_state_dict,
}
torch.save(optimizer_saved_dict, filename + '.optim')
def checksum(self):
if self.cached_checksum is not None:
return self.cached_checksum
@@ -54,18 +83,44 @@ class Embedding:
return self.cached_checksum
class DirWithTextualInversionEmbeddings:
def __init__(self, path):
self.path = path
self.mtime = None
def has_changed(self):
if not os.path.isdir(self.path):
return False
mt = os.path.getmtime(self.path)
if self.mtime is None or mt > self.mtime:
return True
def update(self):
if not os.path.isdir(self.path):
return
self.mtime = os.path.getmtime(self.path)
class EmbeddingDatabase:
def __init__(self, embeddings_dir):
def __init__(self):
self.ids_lookup = {}
self.word_embeddings = {}
self.dir_mtime = None
self.embeddings_dir = embeddings_dir
self.skipped_embeddings = {}
self.expected_shape = -1
self.embedding_dirs = {}
def add_embedding_dir(self, path):
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
def clear_embedding_dirs(self):
self.embedding_dirs.clear()
def register_embedding(self, embedding, model):
self.word_embeddings[embedding.name] = embedding
ids = model.cond_stage_model.tokenizer([embedding.name], add_special_tokens=False)['input_ids'][0]
ids = model.cond_stage_model.tokenize([embedding.name])[0]
first_id = ids[0]
if first_id not in self.ids_lookup:
@@ -75,70 +130,104 @@ class EmbeddingDatabase:
return embedding
def load_textual_inversion_embeddings(self):
mt = os.path.getmtime(self.embeddings_dir)
if self.dir_mtime is not None and mt <= self.dir_mtime:
def get_expected_shape(self):
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
return vec.shape[1]
def load_from_file(self, path, filename):
name, ext = os.path.splitext(filename)
ext = ext.upper()
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
_, second_ext = os.path.splitext(name)
if second_ext.upper() == '.PREVIEW':
return
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
elif ext in ['.SAFETENSORS']:
data = safetensors.torch.load_file(path, device="cpu")
else:
return
self.dir_mtime = mt
self.ids_lookup.clear()
self.word_embeddings.clear()
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
def process_file(path, filename):
name = os.path.splitext(filename)[0]
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
data = []
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
else:
data = torch.load(path, map_location="cpu")
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('hash', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)
else:
self.skipped_embeddings[name] = embedding
for fn in os.listdir(self.embeddings_dir):
try:
fullfn = os.path.join(self.embeddings_dir, fn)
def load_from_dir(self, embdir):
if not os.path.isdir(embdir.path):
return
if os.stat(fullfn).st_size == 0:
for root, dirs, fns in os.walk(embdir.path):
for fn in fns:
try:
fullfn = os.path.join(root, fn)
if os.stat(fullfn).st_size == 0:
continue
self.load_from_file(fullfn, fn)
except Exception:
print(f"Error loading embedding {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
continue
process_file(fullfn, fn)
except Exception:
print(f"Error loading emedding {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
continue
def load_textual_inversion_embeddings(self, force_reload=False):
if not force_reload:
need_reload = False
for path, embdir in self.embedding_dirs.items():
if embdir.has_changed():
need_reload = True
break
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
print("Embeddings:", ', '.join(self.word_embeddings.keys()))
if not need_reload:
return
self.ids_lookup.clear()
self.word_embeddings.clear()
self.skipped_embeddings.clear()
self.expected_shape = self.get_expected_shape()
for path, embdir in self.embedding_dirs.items():
self.load_from_dir(embdir)
embdir.update()
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
def find_embedding_at_position(self, tokens, offset):
token = tokens[offset]
@@ -154,19 +243,26 @@ class EmbeddingDatabase:
return None, None
def create_embedding(name, num_vectors_per_token, init_text='*'):
def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
cond_model = shared.sd_model.cond_stage_model
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
with devices.autocast():
cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
#cond_model expects at least some text, so we provide '*' as backup.
embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token)
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
for i in range(num_vectors_per_token):
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
#Only copy if we provided an init_text, otherwise keep vectors as zeros
if init_text:
for i in range(num_vectors_per_token):
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
embedding = Embedding(vec, name)
embedding.step = 0
@@ -181,7 +277,6 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if step % shared.opts.training_write_csv_every != 0:
return
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
@@ -190,13 +285,13 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if write_csv_header:
csv_writer.writeheader()
epoch = step // epoch_len
epoch_step = step - epoch * epoch_len
epoch = (step - 1) // epoch_len
epoch_step = (step - 1) % epoch_len
csv_writer.writerow({
"step": step + 1,
"epoch": epoch + 1,
"epoch_step": epoch_step + 1,
"step": step,
"epoch": epoch,
"epoch_step": epoch_step,
**values,
})
@@ -225,15 +320,45 @@ def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
tensorboard_writer.add_image(tag, img_tensor, global_step=step)
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert embedding_name, 'embedding not selected'
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
assert learn_rate, "Learning rate is empty or 0"
assert isinstance(batch_size, int), "Batch size must be integer"
assert batch_size > 0, "Batch size must be positive"
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
assert gradient_step > 0, "Gradient accumulation step must be positive"
assert data_root, "Dataset directory is empty"
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
assert template_filename, "Prompt template file not selected"
assert template_file, f"Prompt template file {template_filename} not found"
assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist"
assert steps, "Max steps is empty or 0"
assert isinstance(steps, int), "Max steps must be integer"
assert steps > 0, "Max steps must be positive"
assert isinstance(save_model_every, int), "Save {name} must be integer"
assert save_model_every >= 0, "Save {name} must be positive or 0"
assert isinstance(create_image_every, int), "Create image must be integer"
assert create_image_every >= 0, "Create image must be positive or 0"
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"
def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
template_file = textual_inversion_templates.get(template_filename, None)
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
template_file = template_file.path
shared.state.job = "train-embedding"
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
unload = shared.opts.unload_models_when_training
if save_embedding_every > 0:
embedding_dir = os.path.join(log_directory, "embeddings")
@@ -252,160 +377,264 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
os.makedirs(images_embeds_dir, exist_ok=True)
else:
images_embeds_dir = None
cond_model = shared.sd_model.cond_stage_model
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
embedding.vec.requires_grad = True
losses = torch.zeros((32,))
last_saved_file = "<none>"
last_saved_image = "<none>"
embedding_yet_to_be_embedded = False
checkpoint = sd_models.select_checkpoint()
initial_step = embedding.step or 0
if initial_step > steps:
if initial_step >= steps:
shared.state.textinfo = "Model has already been trained beyond specified max steps"
return embedding, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
None
if clip_grad:
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
old_parallel_processing_allowed = shared.parallel_processing_allowed
if shared.opts.training_enable_tensorboard:
tensorboard_writer = tensorboard_setup(log_directory)
pbar = tqdm.tqdm(enumerate(ds), total=steps-initial_step)
for i, entries in pbar:
embedding.step = i + initial_step
pin_memory = shared.opts.pin_memory
scheduler.apply(optimizer, embedding.step)
if scheduler.finished:
break
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
if shared.state.interrupted:
break
if shared.opts.save_training_settings_to_txt:
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
with torch.autocast("cuda"):
c = cond_model([entry.cond_text for entry in entries])
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
latent_sampling_method = ds.latent_sampling_method
losses[embedding.step % losses.shape[0]] = loss.item()
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.parallel_processing_allowed = False
shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
if shared.opts.save_optimizer_state:
optimizer_state_dict = None
if os.path.exists(filename + '.optim'):
optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
print("Loaded existing optimizer from checkpoint")
else:
print("No saved optimizer exists in checkpoint")
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
steps_per_epoch = len(ds) // batch_size // gradient_step
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
loss_step = 0
_loss_step = 0 #internal
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
embedding_yet_to_be_embedded = False
is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
img_c = None
pbar = tqdm.tqdm(total=steps - initial_step)
try:
for i in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
break
for j, batch in enumerate(dl):
# works as a drop_last=True for gradient accumulation
if j == max_steps_per_epoch:
break
scheduler.apply(optimizer, embedding.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
if clip_grad:
clip_grad_sched.step(embedding.step)
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
c = shared.sd_model.cond_stage_model(batch.cond_text)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if is_training_inpainting_model:
if img_c is None:
img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height)
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
cond = {"c_concat": [img_c], "c_crossattn": [c]}
else:
cond = c
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
loss = shared.sd_model(x, cond)[0] / gradient_step
del x
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
embedding.save(last_saved_file)
embedding_yet_to_be_embedded = True
_loss_step += loss.item()
scaler.scale(loss).backward()
if shared.opts.training_enable_tensorboard:
tensorboard_add(tensorboard_writer, loss=losses.mean(), global_step=embedding.step,
step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
if clip_grad:
clip_grad(embedding.vec, clip_grad_sched.learn_rate)
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
"loss": f"{losses.mean():.7f}",
"learn_rate": scheduler.learn_rate
})
scaler.step(optimizer)
scaler.update()
embedding.step += 1
pbar.update()
optimizer.zero_grad(set_to_none=True)
loss_step = _loss_step
_loss_step = 0
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
steps_done = embedding.step + 1
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
epoch_num = embedding.step // steps_per_epoch
epoch_step = embedding.step % steps_per_epoch
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_index = preview_sampler_index
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = entries[0].cond_text
p.steps = 20
p.width = training_width
p.height = training_height
description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}"
pbar.set_description(description)
shared.state.textinfo = description
if embedding_dir is not None and steps_done % save_embedding_every == 0:
# Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
preview_text = p.prompt
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
"loss": f"{loss_step:.7f}",
"learn_rate": scheduler.learn_rate
})
processed = processing.process_images(p)
image = processed.images[0]
if images_dir is not None and steps_done % create_image_every == 0:
forced_filename = f'{embedding_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
shared.state.current_image = image
shared.sd_model.first_stage_model.to(devices.device)
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = batch.cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
info = PngImagePlugin.PngInfo()
data = torch.load(last_saved_file)
info.add_text("sd-ti-embedding", embedding_to_b64(data))
preview_text = p.prompt
title = "<{}>".format(data.get('name', '???'))
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images) > 0 else None
try:
vectorSize = list(data['string_to_param'].values())[0].shape[0]
except Exception as e:
vectorSize = '?'
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
footer_mid = '[{}]'.format(checkpoint.hash)
footer_right = '{}v {}s'.format(vectorSize, embedding.step)
if image is not None:
shared.state.current_image = image
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
embedding_yet_to_be_embedded = False
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
image.save(last_saved_image)
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}",
image, embedding.step)
info = PngImagePlugin.PngInfo()
data = torch.load(last_saved_file)
info.add_text("sd-ti-embedding", embedding_to_b64(data))
last_saved_image += f", prompt: {preview_text}"
title = "<{}>".format(data.get('name', '???'))
shared.state.job_no = embedding.step
try:
vectorSize = list(data['string_to_param'].values())[0].shape[0]
except Exception as e:
vectorSize = '?'
shared.state.textinfo = f"""
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
footer_mid = '[{}]'.format(checkpoint.hash)
footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
embedding_yet_to_be_embedded = False
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = embedding.step
shared.state.textinfo = f"""
<p>
Loss: {losses.mean():.7f}<br/>
Step: {embedding.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
checkpoint = sd_models.select_checkpoint()
embedding.sd_checkpoint = checkpoint.hash
embedding.sd_checkpoint_name = checkpoint.model_name
embedding.cached_checksum = None
embedding.save(filename)
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
finally:
pbar.leave = False
pbar.close()
shared.sd_model.first_stage_model.to(devices.device)
shared.parallel_processing_allowed = old_parallel_processing_allowed
return embedding, filename
def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
old_embedding_name = embedding.name
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
try:
embedding.sd_checkpoint = checkpoint.hash
embedding.sd_checkpoint_name = checkpoint.model_name
if remove_cached_checksum:
embedding.cached_checksum = None
embedding.name = embedding_name
embedding.optimizer_state_dict = optimizer.state_dict()
embedding.save(filename)
except:
embedding.sd_checkpoint = old_sd_checkpoint
embedding.sd_checkpoint_name = old_sd_checkpoint_name
embedding.name = old_embedding_name
embedding.cached_checksum = old_cached_checksum
raise

View File

@@ -7,8 +7,8 @@ import modules.textual_inversion.preprocess
from modules import sd_hijack, shared
def create_embedding(name, initialization_text, nvpt):
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text)
def create_embedding(name, initialization_text, nvpt, overwrite_old):
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text)
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
@@ -18,15 +18,17 @@ def create_embedding(name, initialization_text, nvpt):
def preprocess(*args):
modules.textual_inversion.preprocess.preprocess(*args)
return "Preprocessing finished.", ""
return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", ""
def train_embedding(*args):
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
apply_optimizations = shared.opts.training_xattention_optimizations
try:
sd_hijack.undo_optimizations()
if not apply_optimizations:
sd_hijack.undo_optimizations()
embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
@@ -38,5 +40,6 @@ Embedding saved to {html.escape(filename)}
except Exception:
raise
finally:
sd_hijack.apply_optimizations()
if not apply_optimizations:
sd_hijack.apply_optimizations()