prevent replacing torch_randn globally (instead replacing k_diffusion.sampling.torch) and add a setting to disable this all

This commit is contained in:
AUTOMATIC
2022-09-16 09:47:03 +03:00
parent 9d40212485
commit 87e8b9a2ab
3 changed files with 23 additions and 7 deletions

View File

@@ -175,7 +175,19 @@ def extended_trange(count, *args, **kwargs):
shared.total_tqdm.update()
original_randn_like = torch.randn_like
class TorchHijack:
def __init__(self, kdiff_sampler):
self.kdiff_sampler = kdiff_sampler
def __getattr__(self, item):
if item == 'randn_like':
return self.kdiff_sampler.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
@@ -186,8 +198,6 @@ class KDiffusionSampler:
self.sampler_noises = None
self.sampler_noise_index = 0
k_diffusion.sampling.torch.randn_like = self.randn_like
def callback_state(self, d):
store_latent(d["denoised"])
@@ -200,8 +210,7 @@ class KDiffusionSampler:
if noise is not None and x.shape == noise.shape:
res = noise
else:
print('generating')
res = original_randn_like(x)
res = torch.randn_like(x)
self.sampler_noise_index += 1
return res
@@ -223,6 +232,9 @@ class KDiffusionSampler:
if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self)
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
def sample(self, p, x, conditioning, unconditional_conditioning):
@@ -232,6 +244,9 @@ class KDiffusionSampler:
if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self)
samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
return samples_ddim