mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
Add option for float32 sampling with float16 UNet
This also handles type casting so that ROCm and MPS torch devices work correctly without --no-half. One cast is required for deepbooru in deepbooru_model.py, some explicit casting is required for img2img and inpainting. depth_model can't be converted to float16 or it won't work correctly on some systems (it's known to have issues on MPS) so in sd_models.py model.depth_model is removed for model.half().
This commit is contained in:
@@ -2,6 +2,8 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules import devices
|
||||
|
||||
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
|
||||
|
||||
|
||||
@@ -196,7 +198,7 @@ class DeepDanbooruModel(nn.Module):
|
||||
t_358, = inputs
|
||||
t_359 = t_358.permute(*[0, 3, 1, 2])
|
||||
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
|
||||
t_360 = self.n_Conv_0(t_359_padded)
|
||||
t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
|
||||
t_361 = F.relu(t_360)
|
||||
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
|
||||
t_362 = self.n_MaxPool_0(t_361)
|
||||
|
Reference in New Issue
Block a user