Merge pull request #3858 from R-N/log-csv

Fix log off by 1 #3847
This commit is contained in:
AUTOMATIC1111
2022-10-29 07:55:20 +03:00
committed by GitHub
3 changed files with 20 additions and 18 deletions

View File

@@ -429,7 +429,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
optimizer.step()
if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
steps_done = hypernetwork.step + 1
if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.")
if len(previous_mean_losses) > 1:
@@ -439,9 +441,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
pbar.set_description(dataset_loss_info)
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(last_saved_file)
@@ -450,8 +452,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
"learn_rate": scheduler.learn_rate
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
if images_dir is not None and steps_done % create_image_every == 0:
forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()