Merge branch 'master' into test_resolve_conflicts

This commit is contained in:
MalumaDev
2022-10-15 16:20:17 +02:00
committed by GitHub
32 changed files with 1094 additions and 292 deletions

View File

@@ -6,6 +6,7 @@ import torch
import tqdm
import html
import datetime
import csv
from PIL import Image, PngImagePlugin
@@ -172,15 +173,33 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
def batched(dataset, total, n=1):
for ndx in range(0, total, n):
yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
if step % shared.opts.training_write_csv_every != 0:
return
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
if write_csv_header:
csv_writer.writeheader()
epoch = step // epoch_len
epoch_step = step - epoch * epoch_len
csv_writer.writerow({
"step": step + 1,
"epoch": epoch + 1,
"epoch_step": epoch_step + 1,
**values,
})
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps,
create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding,
preview_image_prompt, batch_size=1,
gradient_accumulation=1):
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -212,11 +231,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width,
height=training_height,
repeats=shared.opts.training_image_repeats_per_epoch,
placeholder_token=embedding_name, model=shared.sd_model,
device=devices.device, template_file=template_file)
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
hijack = sd_hijack.model_hijack
@@ -235,8 +250,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(batched(ds, steps - ititial_step, batch_size)), total=steps - ititial_step)
for i, entry in pbar:
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, entries in pbar:
embedding.step = i + ititial_step
scheduler.apply(optimizer, embedding.step)
@@ -247,11 +262,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
break
with torch.autocast("cuda"):
c = cond_model([e.cond_text for e in entry])
x = torch.stack([e.latent for e in entry]).to(devices.device)
c = cond_model([entry.cond_text for entry in entries])
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
losses[embedding.step % losses.shape[0]] = loss.item()
@@ -271,21 +284,37 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
embedding.save(last_saved_file)
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
"loss": f"{losses.mean():.7f}",
"learn_rate": scheduler.learn_rate
})
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
preview_text = entry[0].cond_text if preview_image_prompt == "" else preview_image_prompt
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
prompt=preview_text,
steps=20,
height=training_height,
width=training_width,
do_not_save_grid=True,
do_not_save_samples=True,
)
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_index = preview_sampler_index
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = entries[0].cond_text
p.steps = 20
p.width = training_width
p.height = training_height
preview_text = p.prompt
processed = processing.process_images(p)
image = processed.images[0]
@@ -320,7 +349,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
<p>
Loss: {losses.mean():.7f}<br/>
Step: {embedding.step}<br/>
Last prompt: {html.escape(entry[-1].cond_text)}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>