mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
update lists of models after merging them in checkpoints tab
support saving as half
This commit is contained in:
@@ -13,6 +13,7 @@ from modules.ui import plaintext_to_html
|
||||
import modules.codeformer_model
|
||||
import piexif
|
||||
import piexif.helper
|
||||
import gradio as gr
|
||||
|
||||
|
||||
cached_images = {}
|
||||
@@ -140,7 +141,7 @@ def run_pnginfo(image):
|
||||
return '', geninfo, info
|
||||
|
||||
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount):
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half):
|
||||
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
|
||||
def weighted_sum(theta0, theta1, alpha):
|
||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||
@@ -156,14 +157,14 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
||||
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
|
||||
return theta0 + ((theta1 - theta0) * alpha)
|
||||
|
||||
primary_model_filename = sd_models.checkpoints_list[primary_model_name].filename
|
||||
secondary_model_filename = sd_models.checkpoints_list[secondary_model_name].filename
|
||||
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
||||
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
||||
|
||||
print(f"Loading {primary_model_filename}...")
|
||||
primary_model = torch.load(primary_model_filename, map_location='cpu')
|
||||
print(f"Loading {primary_model_info.filename}...")
|
||||
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
|
||||
|
||||
print(f"Loading {secondary_model_filename}...")
|
||||
secondary_model = torch.load(secondary_model_filename, map_location='cpu')
|
||||
print(f"Loading {secondary_model_info.filename}...")
|
||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
||||
|
||||
theta_0 = primary_model['state_dict']
|
||||
theta_1 = secondary_model['state_dict']
|
||||
@@ -178,17 +179,23 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
||||
print(f"Merging...")
|
||||
for key in tqdm.tqdm(theta_0.keys()):
|
||||
if 'model' in key and key in theta_1:
|
||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
|
||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
|
||||
if save_as_half:
|
||||
theta_0[key] = theta_0[key].half()
|
||||
|
||||
for key in theta_1.keys():
|
||||
if 'model' in key and key not in theta_0:
|
||||
theta_0[key] = theta_1[key]
|
||||
if save_as_half:
|
||||
theta_0[key] = theta_0[key].half()
|
||||
|
||||
filename = primary_model_name + '_' + str(round(interp_amount,2)) + '-' + secondary_model_name + '_' + str(round((float(1.0) - interp_amount),2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
||||
filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
||||
output_modelname = os.path.join(shared.cmd_opts.ckpt_dir, filename)
|
||||
|
||||
print(f"Saving to {output_modelname}...")
|
||||
torch.save(primary_model, output_modelname)
|
||||
|
||||
sd_models.list_models()
|
||||
|
||||
print(f"Checkpoint saved.")
|
||||
return "Checkpoint saved to " + output_modelname
|
||||
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)]
|
||||
|
Reference in New Issue
Block a user