TAESD fix

This commit is contained in:
Sakura-Luna
2023-05-17 17:39:07 +08:00
parent 85232a5b26
commit 7a13a3f4ba
2 changed files with 6 additions and 5 deletions

View File

@@ -35,13 +35,14 @@ def single_sample_to_image(sample, approximation=None):
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
elif approximation == 3:
x_sample = sd_vae_taesd.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
x_sample = sd_vae_taesd.TAESD.unscale_latents(x_sample) # returns value in [-2, 2]
x_sample = x_sample * 0.5
x_sample = sample * 1.5
x_sample = sd_vae_taesd.model()(x_sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
if approximation != 3:
x_sample = (x_sample + 1.0) / 2.0
x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)