Deduplicate tiled inference code from SwinIR/ScuNET

This commit is contained in:
Aarni Koskela
2023-12-30 22:53:49 +02:00
parent ce21840a04
commit 6f86b62a1b
3 changed files with 87 additions and 97 deletions

View File

@@ -4,11 +4,11 @@ import sys
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
from modules import modelloader, devices, script_callbacks, shared
from modules.shared import opts, state
from modules.shared import opts
from modules.upscaler import Upscaler, UpscalerData
from modules.upscaler_utils import tiled_upscale_2
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
@@ -110,14 +110,14 @@ def upscale(
w_pad = (w_old // window_size + 1) * window_size - w_old
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
output = inference(
output = tiled_upscale_2(
img,
model,
tile=tile,
tile_size=tile,
tile_overlap=tile_overlap,
window_size=window_size,
scale=scale,
device=device,
desc="SwinIR tiles",
)
output = output[..., : h_old * scale, : w_old * scale]
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
@@ -129,53 +129,6 @@ def upscale(
return Image.fromarray(output, "RGB")
def inference(
img,
model,
*,
tile: int,
tile_overlap: int,
window_size: int,
scale: int,
device,
):
# test the image tile by tile
b, c, h, w = img.size()
tile = min(tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
sf = scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device).type_as(img)
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for h_idx in h_idx_list:
if state.interrupted or state.skipped:
break
for w_idx in w_idx_list:
if state.interrupted or state.skipped:
break
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W)
return output
def on_ui_settings():
import gradio as gr