mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 19:22:32 +00:00
rework saving training params to file #6372
This commit is contained in:
@@ -18,6 +18,8 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
|
||||
insert_image_data_embed, extract_image_data_embed,
|
||||
caption_image_overlay)
|
||||
from modules.textual_inversion.logging import save_settings_to_file
|
||||
|
||||
|
||||
class Embedding:
|
||||
def __init__(self, vec, name, step=None):
|
||||
@@ -231,25 +233,6 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
||||
**values,
|
||||
})
|
||||
|
||||
# Note: hypernetwork.py has a nearly identical function of the same name.
|
||||
def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
# Starting index of preview-related arguments.
|
||||
border_index = 18
|
||||
# Get a list of the argument names.
|
||||
arg_names = inspect.getfullargspec(save_settings_to_file).args
|
||||
# Create a list of the argument names to include in the settings string.
|
||||
names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
|
||||
if preview_from_txt2img:
|
||||
names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable.
|
||||
# Build the settings string.
|
||||
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
|
||||
for name in names:
|
||||
if name != 'log_directory': # It's useless and redundant to save log_directory.
|
||||
value = locals()[name]
|
||||
settings_str += f"{name}: {value}\n"
|
||||
# Create or append to the file.
|
||||
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
|
||||
fout.write(settings_str + "\n\n")
|
||||
|
||||
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
|
||||
assert model_name, f"{name} not selected"
|
||||
@@ -330,7 +313,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||
|
||||
if shared.opts.save_training_settings_to_txt:
|
||||
save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), embedding_name, len(embedding.vec), learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
|
||||
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
|
||||
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
|
||||
|
Reference in New Issue
Block a user