face detection algo, configurability, reusability

Try to move the crop in the direction of a face if it is present

More internal configuration options for choosing weights of each of the algorithm's findings

Move logic into its module
This commit is contained in:
captin411
2022-10-19 17:19:02 -07:00
committed by GitHub
parent 41e3877be2
commit 59ed744383
2 changed files with 230 additions and 136 deletions

View File

@@ -1,7 +1,5 @@
import os
import cv2
import numpy as np
from PIL import Image, ImageOps, ImageDraw
from PIL import Image, ImageOps
import platform
import sys
import tqdm
@@ -9,6 +7,7 @@ import time
from modules import shared, images
from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
@@ -80,6 +79,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index)
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
filename = os.path.join(src, imagefile)
@@ -118,37 +118,16 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
processing_option_ran = True
if process_entropy_focus and (is_tall or is_wide):
if is_tall:
img = img.resize((width, height * img.height // img.width))
else:
img = img.resize((width * img.width // img.height, height))
x_focal_center, y_focal_center = image_central_focal_point(img, width, height)
# take the focal point and turn it into crop coordinates that try to center over the focal
# point but then get adjusted back into the frame
y_half = int(height / 2)
x_half = int(width / 2)
x1 = x_focal_center - x_half
if x1 < 0:
x1 = 0
elif x1 + width > img.width:
x1 = img.width - width
y1 = y_focal_center - y_half
if y1 < 0:
y1 = 0
elif y1 + height > img.height:
y1 = img.height - height
x2 = x1 + width
y2 = y1 + height
crop = [x1, y1, x2, y2]
focal = img.crop(tuple(crop))
if process_entropy_focus and img.height != img.width:
autocrop_settings = autocrop.Settings(
crop_width = width,
crop_height = height,
face_points_weight = 0.9,
entropy_points_weight = 0.7,
corner_points_weight = 0.5,
annotate_image = False
)
focal = autocrop.crop_image(img, autocrop_settings)
save_pic(focal, index)
processing_option_ran = True
@@ -157,105 +136,4 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
img = images.resize_image(1, img, width, height)
save_pic(img, index)
shared.state.nextjob()
def image_central_focal_point(im, target_width, target_height):
focal_points = []
focal_points.extend(
image_focal_points(im)
)
fp_entropy = image_entropy_point(im, target_width, target_height)
fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy
focal_points.append(fp_entropy)
weight = 0.0
x = 0.0
y = 0.0
for focal_point in focal_points:
weight += focal_point['weight']
x += focal_point['x'] * focal_point['weight']
y += focal_point['y'] * focal_point['weight']
avg_x = round(x // weight)
avg_y = round(y // weight)
return avg_x, avg_y
def image_focal_points(im):
grayscale = im.convert("L")
# naive attempt at preventing focal points from collecting at watermarks near the bottom
gd = ImageDraw.Draw(grayscale)
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
np_im = np.array(grayscale)
points = cv2.goodFeaturesToTrack(
np_im,
maxCorners=100,
qualityLevel=0.04,
minDistance=min(grayscale.width, grayscale.height)*0.07,
useHarrisDetector=False,
)
if points is None:
return []
focal_points = []
for point in points:
x, y = point.ravel()
focal_points.append({
'x': x,
'y': y,
'weight': 1.0
})
return focal_points
def image_entropy_point(im, crop_width, crop_height):
landscape = im.height < im.width
portrait = im.height > im.width
if landscape:
move_idx = [0, 2]
move_max = im.size[0]
elif portrait:
move_idx = [1, 3]
move_max = im.size[1]
e_max = 0
crop_current = [0, 0, crop_width, crop_height]
crop_best = crop_current
while crop_current[move_idx[1]] < move_max:
crop = im.crop(tuple(crop_current))
e = image_entropy(crop)
if (e > e_max):
e_max = e
crop_best = list(crop_current)
crop_current[move_idx[0]] += 4
crop_current[move_idx[1]] += 4
x_mid = int(crop_best[0] + crop_width/2)
y_mid = int(crop_best[1] + crop_height/2)
return {
'x': x_mid,
'y': y_mid,
'weight': 1.0
}
def image_entropy(im):
# greyscale image entropy
band = np.asarray(im.convert("1"))
hist, _ = np.histogram(band, bins=range(0, 256))
hist = hist[hist > 0]
return -np.log2(hist / hist.sum()).sum()
shared.state.nextjob()