mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-05 03:32:37 +00:00
images history improvement
This commit is contained in:
@@ -39,6 +39,7 @@ import modules.generation_parameters_copypaste
|
||||
from modules import prompt_parser
|
||||
from modules.images import save_image
|
||||
import modules.textual_inversion.ui
|
||||
import modules.hypernetwork.ui
|
||||
import modules.images_history as img_his
|
||||
|
||||
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
|
||||
@@ -312,7 +313,7 @@ def interrogate(image):
|
||||
|
||||
|
||||
def interrogate_deepbooru(image):
|
||||
prompt = get_deepbooru_tags(image)
|
||||
prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold)
|
||||
return gr_show(True) if prompt is None else prompt
|
||||
|
||||
|
||||
@@ -525,7 +526,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7)
|
||||
|
||||
with gr.Row():
|
||||
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1)
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||
|
||||
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
|
||||
@@ -712,7 +713,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
tiling = gr.Checkbox(label='Tiling', value=False)
|
||||
|
||||
with gr.Row():
|
||||
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
|
||||
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1)
|
||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||
|
||||
with gr.Group():
|
||||
@@ -964,7 +965,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
|
||||
extras_send_to_inpaint.click(
|
||||
fn=lambda x: image_from_url_text(x),
|
||||
_js="extract_image_from_gallery_img2img",
|
||||
_js="extract_image_from_gallery_inpaint",
|
||||
inputs=[result_images],
|
||||
outputs=[init_img_with_mask],
|
||||
)
|
||||
@@ -1025,13 +1026,27 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
create_embedding = gr.Button(value="Create", variant='primary')
|
||||
create_embedding = gr.Button(value="Create embedding", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new hypernetwork</p>")
|
||||
|
||||
new_hypernetwork_name = gr.Textbox(label="Name")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
|
||||
|
||||
process_src = gr.Textbox(label='Source directory')
|
||||
process_dst = gr.Textbox(label='Destination directory')
|
||||
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||
process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||
|
||||
with gr.Row():
|
||||
process_flip = gr.Checkbox(label='Create flipped copies')
|
||||
@@ -1046,24 +1061,25 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 512x512 images</p>")
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
|
||||
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
|
||||
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
|
||||
learn_rate = gr.Number(label='Learning rate', value=5.0e-03)
|
||||
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
||||
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
||||
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||
steps = gr.Number(label='Max steps', value=100000, precision=0)
|
||||
num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
|
||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
preview_image_prompt = gr.Textbox(label='Preview prompt', value="")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
interrupt_training = gr.Button(value="Interrupt")
|
||||
train_embedding = gr.Button(value="Train", variant='primary')
|
||||
interrupt_training = gr.Button(value="Interrupt")
|
||||
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
|
||||
train_embedding = gr.Button(value="Train Embedding", variant='primary')
|
||||
|
||||
with gr.Column():
|
||||
progressbar = gr.HTML(elem_id="ti_progressbar")
|
||||
@@ -1089,12 +1105,26 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
]
|
||||
)
|
||||
|
||||
create_hypernetwork.click(
|
||||
fn=modules.hypernetwork.ui.create_hypernetwork,
|
||||
inputs=[
|
||||
new_hypernetwork_name,
|
||||
],
|
||||
outputs=[
|
||||
train_hypernetwork_name,
|
||||
ti_output,
|
||||
ti_outcome,
|
||||
]
|
||||
)
|
||||
|
||||
run_preprocess.click(
|
||||
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
|
||||
_js="start_training_textual_inversion",
|
||||
inputs=[
|
||||
process_src,
|
||||
process_dst,
|
||||
process_width,
|
||||
process_height,
|
||||
process_flip,
|
||||
process_split,
|
||||
process_caption,
|
||||
@@ -1113,10 +1143,34 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
learn_rate,
|
||||
dataset_directory,
|
||||
log_directory,
|
||||
training_width,
|
||||
training_height,
|
||||
steps,
|
||||
num_repeats,
|
||||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
preview_image_prompt,
|
||||
],
|
||||
outputs=[
|
||||
ti_output,
|
||||
ti_outcome,
|
||||
]
|
||||
)
|
||||
|
||||
train_hypernetwork.click(
|
||||
fn=wrap_gradio_gpu_call(modules.hypernetwork.ui.train_hypernetwork, extra_outputs=[gr.update()]),
|
||||
_js="start_training_textual_inversion",
|
||||
inputs=[
|
||||
train_hypernetwork_name,
|
||||
learn_rate,
|
||||
dataset_directory,
|
||||
log_directory,
|
||||
steps,
|
||||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
preview_image_prompt,
|
||||
],
|
||||
outputs=[
|
||||
ti_output,
|
||||
@@ -1130,6 +1184,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
outputs=[],
|
||||
)
|
||||
|
||||
|
||||
def create_setting_component(key):
|
||||
def fun():
|
||||
return opts.data[key] if key in opts.data else opts.data_labels[key].default
|
||||
@@ -1335,7 +1390,7 @@ Requested path was: {f}
|
||||
|
||||
with gr.Tabs() as tabs:
|
||||
for interface, label, ifid in interfaces:
|
||||
with gr.TabItem(label, id=ifid):
|
||||
with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid):
|
||||
interface.render()
|
||||
|
||||
if os.path.exists(os.path.join(script_path, "notification.mp3")):
|
||||
|
Reference in New Issue
Block a user