mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-08 21:30:27 +00:00
Merge branch 'learning_rate-scheduling' into learnschedule
This commit is contained in:
@@ -156,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
||||
return fn
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file):
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
@@ -208,7 +208,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
for i, (x, text) in pbar:
|
||||
for i, (x, text, _) in pbar:
|
||||
embedding.step = i + ititial_step
|
||||
|
||||
if embedding.step > end_step:
|
||||
@@ -236,10 +236,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_num = embedding.step // epoch_len
|
||||
epoch_step = embedding.step - (epoch_num * epoch_len) + 1
|
||||
epoch_num = embedding.step // len(ds)
|
||||
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
|
||||
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}")
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
|
||||
|
||||
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
|
||||
@@ -248,12 +248,14 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
||||
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
prompt=text,
|
||||
prompt=preview_text,
|
||||
steps=20,
|
||||
height=training_height,
|
||||
width=training_width,
|
||||
height=training_height,
|
||||
width=training_width,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
)
|
||||
@@ -264,7 +266,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
shared.state.current_image = image
|
||||
image.save(last_saved_image)
|
||||
|
||||
last_saved_image += f", prompt: {text}"
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
shared.state.job_no = embedding.step
|
||||
|
||||
|
Reference in New Issue
Block a user