mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 03:10:21 +00:00
Merge branch 'dev' into 10141-gradio-user-exif
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
@@ -6,14 +7,14 @@ import hashlib
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image, ImageFilter, ImageOps
|
||||
from PIL import Image, ImageOps
|
||||
import random
|
||||
import cv2
|
||||
from skimage import exposure
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import modules.sd_hijack
|
||||
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common
|
||||
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
|
||||
from modules.sd_hijack import model_hijack
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
@@ -23,7 +24,6 @@ import modules.images as images
|
||||
import modules.styles
|
||||
import modules.sd_models as sd_models
|
||||
import modules.sd_vae as sd_vae
|
||||
import logging
|
||||
from ldm.data.util import AddMiDaS
|
||||
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
||||
|
||||
@@ -106,6 +106,9 @@ class StableDiffusionProcessing:
|
||||
"""
|
||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||
"""
|
||||
cached_uc = [None, None]
|
||||
cached_c = [None, None]
|
||||
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
|
||||
if sampler_index is not None:
|
||||
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||
@@ -171,12 +174,13 @@ class StableDiffusionProcessing:
|
||||
|
||||
self.prompts = None
|
||||
self.negative_prompts = None
|
||||
self.extra_network_data = None
|
||||
self.seeds = None
|
||||
self.subseeds = None
|
||||
|
||||
self.step_multiplier = 1
|
||||
self.cached_uc = [None, None]
|
||||
self.cached_c = [None, None]
|
||||
self.cached_uc = StableDiffusionProcessing.cached_uc
|
||||
self.cached_c = StableDiffusionProcessing.cached_c
|
||||
self.uc = None
|
||||
self.c = None
|
||||
|
||||
@@ -290,8 +294,9 @@ class StableDiffusionProcessing:
|
||||
self.sampler = None
|
||||
self.c = None
|
||||
self.uc = None
|
||||
self.cached_c = [None, None]
|
||||
self.cached_uc = [None, None]
|
||||
if not opts.experimental_persistent_cond_cache:
|
||||
StableDiffusionProcessing.cached_c = [None, None]
|
||||
StableDiffusionProcessing.cached_uc = [None, None]
|
||||
|
||||
def get_token_merging_ratio(self, for_hr=False):
|
||||
if for_hr:
|
||||
@@ -313,7 +318,7 @@ class StableDiffusionProcessing:
|
||||
self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
|
||||
self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
|
||||
|
||||
def get_conds_with_caching(self, function, required_prompts, steps, cache):
|
||||
def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data):
|
||||
"""
|
||||
Returns the result of calling function(shared.sd_model, required_prompts, steps)
|
||||
using a cache to store the result if the same arguments have been used before.
|
||||
@@ -322,27 +327,29 @@ class StableDiffusionProcessing:
|
||||
representing the previously used arguments, or None if no arguments
|
||||
have been used before. The second element is where the previously
|
||||
computed result is stored.
|
||||
|
||||
caches is a list with items described above.
|
||||
"""
|
||||
if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info) == cache[0]:
|
||||
return cache[1]
|
||||
for cache in caches:
|
||||
if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) == cache[0]:
|
||||
return cache[1]
|
||||
|
||||
cache = caches[0]
|
||||
|
||||
with devices.autocast():
|
||||
cache[1] = function(shared.sd_model, required_prompts, steps)
|
||||
|
||||
cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info)
|
||||
cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data)
|
||||
return cache[1]
|
||||
|
||||
def setup_conds(self):
|
||||
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
|
||||
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
|
||||
|
||||
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
|
||||
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, self.cached_c)
|
||||
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
|
||||
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
|
||||
|
||||
def parse_extra_network_prompts(self):
|
||||
self.prompts, extra_network_data = extra_networks.parse_prompts(self.prompts)
|
||||
|
||||
return extra_network_data
|
||||
self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
|
||||
|
||||
|
||||
class Processed:
|
||||
@@ -591,6 +598,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
||||
|
||||
|
||||
def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.scripts is not None:
|
||||
p.scripts.before_process(p)
|
||||
|
||||
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
|
||||
|
||||
try:
|
||||
@@ -676,10 +686,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
|
||||
sd_vae_approx.model()
|
||||
|
||||
sd_unet.apply_unet()
|
||||
|
||||
if state.job_count == -1:
|
||||
state.job_count = p.n_iter
|
||||
|
||||
extra_network_data = None
|
||||
for n in range(p.n_iter):
|
||||
p.iteration = n
|
||||
|
||||
@@ -700,11 +711,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if len(p.prompts) == 0:
|
||||
break
|
||||
|
||||
extra_network_data = p.parse_extra_network_prompts()
|
||||
p.parse_extra_network_prompts()
|
||||
|
||||
if not p.disable_extra_networks:
|
||||
with devices.autocast():
|
||||
extra_networks.activate(p, extra_network_data)
|
||||
extra_networks.activate(p, p.extra_network_data)
|
||||
|
||||
if p.scripts is not None:
|
||||
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
|
||||
@@ -739,7 +750,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
del samples_ddim
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
if lowvram.is_enabled(shared.sd_model):
|
||||
lowvram.send_everything_to_cpu()
|
||||
|
||||
devices.torch_gc()
|
||||
@@ -826,8 +837,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if opts.grid_save:
|
||||
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
||||
|
||||
if not p.disable_extra_networks and extra_network_data:
|
||||
extra_networks.deactivate(p, extra_network_data)
|
||||
if not p.disable_extra_networks and p.extra_network_data:
|
||||
extra_networks.deactivate(p, p.extra_network_data)
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
@@ -862,6 +873,8 @@ def old_hires_fix_first_pass_dimensions(width, height):
|
||||
|
||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
sampler = None
|
||||
cached_hr_uc = [None, None]
|
||||
cached_hr_c = [None, None]
|
||||
|
||||
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
@@ -894,6 +907,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
self.hr_negative_prompts = None
|
||||
self.hr_extra_network_data = None
|
||||
|
||||
self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
|
||||
self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
|
||||
self.hr_c = None
|
||||
self.hr_uc = None
|
||||
|
||||
@@ -973,7 +988,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
||||
if self.enable_hr and latent_scale_mode is None:
|
||||
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
|
||||
if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
|
||||
raise Exception(f"could not find upscaler named {self.hr_upscaler}")
|
||||
|
||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
|
||||
@@ -1056,6 +1072,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
with devices.autocast():
|
||||
extra_networks.activate(self, self.hr_extra_network_data)
|
||||
|
||||
with devices.autocast():
|
||||
self.calculate_hr_conds()
|
||||
|
||||
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
|
||||
|
||||
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
|
||||
@@ -1067,8 +1086,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
return samples
|
||||
|
||||
def close(self):
|
||||
super().close()
|
||||
self.hr_c = None
|
||||
self.hr_uc = None
|
||||
if not opts.experimental_persistent_cond_cache:
|
||||
StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
|
||||
StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
|
||||
|
||||
def setup_prompts(self):
|
||||
super().setup_prompts()
|
||||
@@ -1095,12 +1118,31 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
|
||||
self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
|
||||
|
||||
def calculate_hr_conds(self):
|
||||
if self.hr_c is not None:
|
||||
return
|
||||
|
||||
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data)
|
||||
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data)
|
||||
|
||||
def setup_conds(self):
|
||||
super().setup_conds()
|
||||
|
||||
self.hr_uc = None
|
||||
self.hr_c = None
|
||||
|
||||
if self.enable_hr:
|
||||
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
|
||||
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, self.cached_c)
|
||||
if shared.opts.hires_fix_use_firstpass_conds:
|
||||
self.calculate_hr_conds()
|
||||
|
||||
elif lowvram.is_enabled(shared.sd_model): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
|
||||
with devices.autocast():
|
||||
extra_networks.activate(self, self.hr_extra_network_data)
|
||||
|
||||
self.calculate_hr_conds()
|
||||
|
||||
with devices.autocast():
|
||||
extra_networks.activate(self, self.extra_network_data)
|
||||
|
||||
def parse_extra_network_prompts(self):
|
||||
res = super().parse_extra_network_prompts()
|
||||
@@ -1117,7 +1159,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
sampler = None
|
||||
|
||||
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
||||
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.init_images = init_images
|
||||
@@ -1128,7 +1170,11 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
self.image_mask = mask
|
||||
self.latent_mask = None
|
||||
self.mask_for_overlay = None
|
||||
self.mask_blur = mask_blur
|
||||
if mask_blur is not None:
|
||||
mask_blur_x = mask_blur
|
||||
mask_blur_y = mask_blur
|
||||
self.mask_blur_x = mask_blur_x
|
||||
self.mask_blur_y = mask_blur_y
|
||||
self.inpainting_fill = inpainting_fill
|
||||
self.inpaint_full_res = inpaint_full_res
|
||||
self.inpaint_full_res_padding = inpaint_full_res_padding
|
||||
@@ -1150,8 +1196,17 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
if self.inpainting_mask_invert:
|
||||
image_mask = ImageOps.invert(image_mask)
|
||||
|
||||
if self.mask_blur > 0:
|
||||
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
||||
if self.mask_blur_x > 0:
|
||||
np_mask = np.array(image_mask)
|
||||
kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1
|
||||
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
|
||||
image_mask = Image.fromarray(np_mask)
|
||||
|
||||
if self.mask_blur_y > 0:
|
||||
np_mask = np.array(image_mask)
|
||||
kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1
|
||||
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
|
||||
image_mask = Image.fromarray(np_mask)
|
||||
|
||||
if self.inpaint_full_res:
|
||||
self.mask_for_overlay = image_mask
|
||||
|
Reference in New Issue
Block a user