Merge branch 'dev' into 10141-gradio-user-exif

This commit is contained in:
AUTOMATIC1111
2023-06-27 09:05:53 +03:00
committed by GitHub
104 changed files with 3450 additions and 1035 deletions

View File

@@ -1,4 +1,5 @@
import os
from pathlib import Path
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
@@ -14,7 +15,7 @@ from modules.ui import plaintext_to_html
import modules.scripts
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0):
processing.fix_seed(p)
images = shared.listfiles(input_dir)
@@ -22,9 +23,10 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
is_inpaint_batch = False
if inpaint_mask_dir:
inpaint_masks = shared.listfiles(inpaint_mask_dir)
is_inpaint_batch = len(inpaint_masks) > 0
if is_inpaint_batch:
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
is_inpaint_batch = bool(inpaint_masks)
if is_inpaint_batch:
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
@@ -50,14 +52,31 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
continue
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
if to_scale:
p.width = int(img.width * scale_by)
p.height = int(img.height * scale_by)
p.init_images = [img] * p.batch_size
image_path = Path(image)
if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image))
# if not found use first one ("same mask for all images" use-case)
if mask_image_path not in inpaint_masks:
if len(inpaint_masks) == 1:
mask_image_path = inpaint_masks[0]
else:
# try to find corresponding mask for an image using simple filename matching
mask_image_dir = Path(inpaint_mask_dir)
masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*"))
if len(masks_found) == 0:
print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.")
continue
# it should contain only 1 matching mask
# otherwise user has many masks with the same name but different extensions
mask_image_path = masks_found[0]
mask_image = Image.open(mask_image_path)
p.image_mask = mask_image
@@ -66,7 +85,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
proc = process_images(p)
for n, processed_image in enumerate(proc.images):
filename = os.path.basename(image)
filename = image_path.name
if n > 0:
left, right = os.path.splitext(filename)
@@ -93,7 +112,8 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
elif mode == 2: # inpaint
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
mask = mask.convert('L').point(lambda x: 255 if x > 128 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask).convert('L')
image = image.convert("RGB")
elif mode == 3: # inpaint sketch
image = inpaint_color_sketch
@@ -115,7 +135,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if image is not None:
image = ImageOps.exif_transpose(image)
if selected_scale_tab == 1:
if selected_scale_tab == 1 and not is_batch:
assert image, "Can't scale by because no image is selected"
width = int(image.width * scale_by)
@@ -172,7 +192,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args)
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by)
processed = Processed(p, [], p.seed, "")
else: