split codebase into multiple files; to anyone this affects negatively: sorry

This commit is contained in:
AUTOMATIC
2022-09-03 12:08:45 +03:00
parent d7b67d9b40
commit 345028099d
15 changed files with 2217 additions and 2035 deletions

409
modules/processing.py Normal file
View File

@@ -0,0 +1,409 @@
import contextlib
import json
import math
import os
import sys
import torch
import numpy as np
from PIL import Image, ImageFilter, ImageOps
import random
from modules.sd_hijack import model_hijack
from modules.sd_samplers import samplers, samplers_for_img2img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.gfpgan_model as gfpgan
import modules.images as images
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
def torch_gc():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
class StableDiffusionProcessing:
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", seed=-1, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, prompt_matrix=False, use_GFPGAN=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None):
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
self.prompt: str = prompt
self.negative_prompt: str = (negative_prompt or "")
self.seed: int = seed
self.sampler_index: int = sampler_index
self.batch_size: int = batch_size
self.n_iter: int = n_iter
self.steps: int = steps
self.cfg_scale: float = cfg_scale
self.width: int = width
self.height: int = height
self.prompt_matrix: bool = prompt_matrix
self.use_GFPGAN: bool = use_GFPGAN
self.do_not_save_samples: bool = do_not_save_samples
self.do_not_save_grid: bool = do_not_save_grid
self.extra_generation_params: dict = extra_generation_params
self.overlay_images = overlay_images
self.paste_to = None
def init(self):
pass
def sample(self, x, conditioning, unconditional_conditioning):
raise NotImplementedError()
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed, info):
self.images = images_list
self.prompt = p.prompt
self.seed = seed
self.info = info
self.width = p.width
self.height = p.height
self.sampler = samplers[p.sampler_index].name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
def js(self):
obj = {
"prompt": self.prompt,
"seed": int(self.seed),
"width": self.width,
"height": self.height,
"sampler": self.sampler,
"cfg_scale": self.cfg_scale,
"steps": self.steps,
}
return json.dumps(obj)
def create_random_tensors(shape, seeds):
xs = []
for seed in seeds:
torch.manual_seed(seed)
# randn results depend on device; gpu and cpu get different results for same seed;
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
# but the original script had it like this so I do not dare change it for now because
# it will break everyone's seeds.
xs.append(torch.randn(shape, device=shared.device))
x = torch.stack(xs)
return x
def process_images(p: StableDiffusionProcessing) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
prompt = p.prompt
assert p.prompt is not None
torch_gc()
seed = int(random.randrange(4294967294) if p.seed == -1 else p.seed)
os.makedirs(p.outpath_samples, exist_ok=True)
os.makedirs(p.outpath_grids, exist_ok=True)
comments = []
prompt_matrix_parts = []
if p.prompt_matrix:
all_prompts = []
prompt_matrix_parts = prompt.split("|")
combination_count = 2 ** (len(prompt_matrix_parts) - 1)
for combination_num in range(combination_count):
selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1 << n)]
if opts.prompt_matrix_add_to_start:
selected_prompts = selected_prompts + [prompt_matrix_parts[0]]
else:
selected_prompts = [prompt_matrix_parts[0]] + selected_prompts
all_prompts.append(", ".join(selected_prompts))
p.n_iter = math.ceil(len(all_prompts) / p.batch_size)
all_seeds = len(all_prompts) * [seed]
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.")
else:
all_prompts = p.batch_size * p.n_iter * [prompt]
all_seeds = [seed + x for x in range(len(all_prompts))]
def infotext(iteration=0, position_in_batch=0):
generation_params = {
"Steps": p.steps,
"Sampler": samplers[p.sampler_index].name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[position_in_batch + iteration * p.batch_size],
"GFPGAN": ("GFPGAN" if p.use_GFPGAN else None)
}
if p.extra_generation_params is not None:
generation_params.update(p.extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments])
if os.path.exists(cmd_opts.embeddings_dir):
model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model)
output_images = []
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
with torch.no_grad(), precision_scope("cuda"), ema_scope():
p.init()
for n in range(p.n_iter):
if state.interrupted:
break
prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
c = p.sd_model.get_learned_conditioning(prompts)
if len(model_hijack.comments) > 0:
comments += model_hijack.comments
# we manually generate all input noises because each one should have a specific seed
x = create_random_tensors([opt_C, p.height // opt_f, p.width // opt_f], seeds=seeds)
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc)
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
for i, x_sample in enumerate(x_samples_ddim):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
if p.use_GFPGAN:
torch_gc()
x_sample = gfpgan.gfpgan_fix_faces(x_sample)
image = Image.fromarray(x_sample)
if p.overlay_images is not None and i < len(p.overlay_images):
overlay = p.overlay_images[i]
if p.paste_to is not None:
x, y, w, h = p.paste_to
base_image = Image.new('RGBA', (overlay.width, overlay.height))
image = images.resize_image(1, image, w, h)
base_image.paste(image, (x, y))
image = base_image
image = image.convert('RGBA')
image.alpha_composite(overlay)
image = image.convert('RGB')
if opts.samples_save and not p.do_not_save_samples:
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i))
output_images.append(image)
unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
if not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
return_grid = opts.return_grid
if p.prompt_matrix:
grid = images.image_grid(output_images, p.batch_size, rows=1 << ((len(prompt_matrix_parts)-1)//2))
try:
grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
except Exception:
import traceback
print("Error creating prompt_matrix text:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return_grid = True
else:
grid = images.image_grid(output_images, p.batch_size)
if return_grid:
output_images.insert(0, grid)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", seed, prompt, opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename)
torch_gc()
return Processed(p, output_images, seed, infotext())
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None
def init(self):
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
def sample(self, x, conditioning, unconditional_conditioning):
samples_ddim = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
return samples_ddim
def get_crop_region(mask, pad=0):
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
return (
int(max(crop_left-pad, 0)),
int(max(crop_top-pad, 0)),
int(min(w - crop_right + pad, w)),
int(min(h - crop_bottom + pad, h))
)
def fill(image, mask):
image_mod = Image.new('RGBA', (image.width, image.height))
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
image_masked = image_masked.convert('RGBa')
for radius, repeats in [(64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
for _ in range(repeats):
image_mod.alpha_composite(blurred)
return image_mod.convert("RGB")
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, **kwargs):
super().__init__(**kwargs)
self.init_images = init_images
self.resize_mode: int = resize_mode
self.denoising_strength: float = denoising_strength
self.init_latent = None
self.image_mask = mask
self.mask_for_overlay = None
self.mask_blur = mask_blur
self.inpainting_fill = inpainting_fill
self.inpaint_full_res = inpaint_full_res
self.mask = None
self.nmask = None
def init(self):
self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
crop_region = None
if self.image_mask is not None:
if self.mask_blur > 0:
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur)).convert('L')
if self.inpaint_full_res:
self.mask_for_overlay = self.image_mask
mask = self.image_mask.convert('L')
crop_region = get_crop_region(np.array(mask), 64)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
self.image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
else:
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
self.mask_for_overlay = self.image_mask
self.overlay_images = []
imgs = []
for img in self.init_images:
image = img.convert("RGB")
if crop_region is None:
image = images.resize_image(self.resize_mode, image, self.width, self.height)
if self.image_mask is not None:
if self.inpainting_fill != 1:
image = fill(image, self.mask_for_overlay)
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.overlay_images.append(image_masked.convert('RGBA'))
if crop_region is not None:
image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
imgs.append(image)
if len(imgs) == 1:
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size
elif len(imgs) <= self.batch_size:
self.batch_size = len(imgs)
batch_images = np.array(imgs)
else:
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
image = torch.from_numpy(batch_images)
image = 2. * image - 1.
image = image.to(shared.device)
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
if self.image_mask is not None:
latmask = self.image_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float64), 2, 0) / 255
latmask = latmask[0]
latmask = np.tile(latmask[None], (4, 1, 1))
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
if self.inpainting_fill == 2:
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], [self.seed + x + 1 for x in range(self.init_latent.shape[0])]) * self.nmask
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
def sample(self, x, conditioning, unconditional_conditioning):
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask
return samples