mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
Merge branch 'AUTOMATIC1111:master' into master
This commit is contained in:
@@ -191,9 +191,13 @@ class StableDiffusionProcessing():
|
||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||
pass
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||
raise NotImplementedError()
|
||||
|
||||
def close(self):
|
||||
self.sd_model = None
|
||||
self.sampler = None
|
||||
|
||||
|
||||
class Processed:
|
||||
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
|
||||
@@ -509,7 +513,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||
|
||||
with devices.autocast():
|
||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
|
||||
|
||||
samples_ddim = samples_ddim.to(devices.dtype_vae)
|
||||
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
|
||||
@@ -637,7 +641,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
|
||||
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
||||
|
||||
if not self.enable_hr:
|
||||
@@ -650,6 +654,16 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
|
||||
|
||||
"""saves image before applying hires fix, if enabled in options; takes as an arguyment either an image or batch with latent space images"""
|
||||
def save_intermediate(image, index):
|
||||
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
|
||||
return
|
||||
|
||||
if not isinstance(image, Image.Image):
|
||||
image = sd_samplers.sample_to_image(image, index)
|
||||
|
||||
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
|
||||
|
||||
if opts.use_scale_latent_for_hires_fix:
|
||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
|
||||
@@ -660,6 +674,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
else:
|
||||
image_conditioning = self.txt2img_image_conditioning(samples)
|
||||
|
||||
for i in range(samples.shape[0]):
|
||||
save_intermediate(samples, i)
|
||||
else:
|
||||
decoded_samples = decode_first_stage(self.sd_model, samples)
|
||||
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
@@ -669,6 +685,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
image = Image.fromarray(x_sample)
|
||||
|
||||
save_intermediate(image, i)
|
||||
|
||||
image = images.resize_image(0, image, self.width, self.height)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = np.moveaxis(image, 2, 0)
|
||||
@@ -826,8 +845,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
|
||||
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
|
||||
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
|
||||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
||||
@@ -838,4 +856,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
del x
|
||||
devices.torch_gc()
|
||||
|
||||
return samples
|
||||
return samples
|
||||
|
Reference in New Issue
Block a user