mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-08 05:12:35 +00:00
refactored the deepbooru module to improve speed on running multiple interogations in a row. Added the option to generate deepbooru tags for textual inversion preproccessing.
This commit is contained in:
@@ -1,21 +1,74 @@
|
||||
import os.path
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
from multiprocessing import get_context
|
||||
import multiprocessing
|
||||
|
||||
|
||||
def _load_tf_and_return_tags(pil_image, threshold):
|
||||
def get_deepbooru_tags(pil_image, threshold=0.5):
|
||||
"""
|
||||
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
create_deepbooru_process(threshold)
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process_queue.put(pil_image)
|
||||
while shared.deepbooru_process_return["value"] == -1:
|
||||
time.sleep(0.2)
|
||||
release_process()
|
||||
return ret
|
||||
|
||||
|
||||
def deepbooru_process(queue, deepbooru_process_return, threshold):
|
||||
model, tags = get_deepbooru_tags_model()
|
||||
while True: # while process is running, keep monitoring queue for new image
|
||||
pil_image = queue.get()
|
||||
if pil_image == "QUIT":
|
||||
break
|
||||
else:
|
||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold)
|
||||
|
||||
|
||||
def create_deepbooru_process(threshold=0.5):
|
||||
"""
|
||||
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
||||
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
||||
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
|
||||
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
|
||||
the tags.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
shared.deepbooru_process_manager = multiprocessing.Manager()
|
||||
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
||||
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold))
|
||||
shared.deepbooru_process.start()
|
||||
|
||||
|
||||
def release_process():
|
||||
"""
|
||||
Stops the deepbooru process to return used memory
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
shared.deepbooru_process_queue.put("QUIT")
|
||||
shared.deepbooru_process.join()
|
||||
shared.deepbooru_process_queue = None
|
||||
shared.deepbooru_process = None
|
||||
shared.deepbooru_process_return = None
|
||||
shared.deepbooru_process_manager = None
|
||||
|
||||
def get_deepbooru_tags_model():
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
this_folder = os.path.dirname(__file__)
|
||||
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
|
||||
if not os.path.exists(os.path.join(model_path, 'project.json')):
|
||||
# there is no point importing these every time
|
||||
import zipfile
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
||||
model_path)
|
||||
load_file_from_url(
|
||||
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
||||
model_path)
|
||||
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
|
||||
zip_ref.extractall(model_path)
|
||||
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
|
||||
@@ -24,7 +77,13 @@ def _load_tf_and_return_tags(pil_image, threshold):
|
||||
model = dd.project.load_model_from_project(
|
||||
model_path, compile_model=True
|
||||
)
|
||||
return model, tags
|
||||
|
||||
|
||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5):
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
width = model.input_shape[2]
|
||||
height = model.input_shape[1]
|
||||
image = np.array(pil_image)
|
||||
@@ -57,17 +116,4 @@ def _load_tf_and_return_tags(pil_image, threshold):
|
||||
|
||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||
|
||||
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
|
||||
|
||||
|
||||
def subprocess_init_no_cuda():
|
||||
import os
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
||||
|
||||
|
||||
def get_deepbooru_tags(pil_image, threshold=0.5):
|
||||
context = get_context('spawn')
|
||||
with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor:
|
||||
f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, )
|
||||
ret = f.result() # will rethrow any exceptions
|
||||
return ret
|
||||
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
|
Reference in New Issue
Block a user