Depth2img model support

This commit is contained in:
Jay Smith
2022-12-08 18:14:35 -06:00
parent 44c46f0ed3
commit 1ed4f0e228
3 changed files with 81 additions and 4 deletions

View File

@@ -7,6 +7,9 @@ import torch
import re
import safetensors.torch
from omegaconf import OmegaConf
from os import mkdir
from urllib import request
import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
@@ -36,6 +39,7 @@ def setup_model():
os.makedirs(model_path)
list_models()
enable_midas_autodownload()
def checkpoint_tiles():
@@ -227,6 +231,48 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
sd_vae.load_vae(model, vae_file)
def enable_midas_autodownload():
"""
Gives the ldm.modules.midas.api.load_model function automatic downloading.
When the 512-depth-ema model, and other future models like it, is loaded,
it calls midas.api.load_model to load the associated midas depth model.
This function applies a wrapper to download the model to the correct
location automatically.
"""
midas_path = os.path.join(models_path, 'midas')
# stable-diffusion-stability-ai hard-codes the midas model path to
# a location that differs from where other scripts using this model look.
# HACK: Overriding the path here.
for k, v in midas.api.ISL_PATHS.items():
file_name = os.path.basename(v)
midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
midas_urls = {
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
}
midas.api.load_model_inner = midas.api.load_model
def load_model_wrapper(model_type):
path = midas.api.ISL_PATHS[model_type]
if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
print(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
print(f"{model_type} downloaded")
return midas.api.load_model_inner(model_type)
midas.api.load_model = load_model_wrapper
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()