mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 11:12:35 +00:00
Merge pull request #6510 from brkirch/unet16-upcast-precision
Add upcast options, full precision sampling from float16 UNet and upcasting attention for inference using SD 2.1 models without --no-half
This commit is contained in:
@@ -258,16 +258,24 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo):
|
||||
|
||||
if not shared.cmd_opts.no_half:
|
||||
vae = model.first_stage_model
|
||||
depth_model = getattr(model, 'depth_model', None)
|
||||
|
||||
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
|
||||
if shared.cmd_opts.no_half_vae:
|
||||
model.first_stage_model = None
|
||||
# with --upcast-sampling, don't convert the depth model weights to float16
|
||||
if shared.cmd_opts.upcast_sampling and depth_model:
|
||||
model.depth_model = None
|
||||
|
||||
model.half()
|
||||
model.first_stage_model = vae
|
||||
if depth_model:
|
||||
model.depth_model = depth_model
|
||||
|
||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||
devices.dtype_unet = model.model.diffusion_model.dtype
|
||||
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
|
||||
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
@@ -382,6 +390,8 @@ def load_model(checkpoint_info=None):
|
||||
|
||||
if shared.cmd_opts.no_half:
|
||||
sd_config.model.params.unet_config.params.use_fp16 = False
|
||||
elif shared.cmd_opts.upcast_sampling:
|
||||
sd_config.model.params.unet_config.params.use_fp16 = True
|
||||
|
||||
timer = Timer()
|
||||
|
||||
|
Reference in New Issue
Block a user