sd3 TI support

This commit is contained in:
AUTOMATIC1111
2024-07-07 16:36:53 +03:00
parent 1da4907927
commit 11cfe0dd05
3 changed files with 26 additions and 5 deletions

View File

@@ -5,6 +5,8 @@ import math
from torch import nn
from transformers import CLIPTokenizer, T5TokenizerFast
from modules import sd_hijack
#################################################################################################
### Core/Utility
@@ -110,9 +112,9 @@ class CLIPEncoder(torch.nn.Module):
class CLIPEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, textual_inversion_key="clip_l"):
super().__init__()
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
self.token_embedding = sd_hijack.TextualInversionEmbeddings(vocab_size, embed_dim, dtype=dtype, device=device, textual_inversion_key=textual_inversion_key)
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens):
@@ -127,7 +129,7 @@ class CLIPTextModel_(torch.nn.Module):
intermediate_size = config_dict["intermediate_size"]
intermediate_activation = config_dict["hidden_act"]
super().__init__()
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device, textual_inversion_key=config_dict.get('textual_inversion_key', 'clip_l'))
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device)
self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device)