Holy $hit.

Yep.

Fix gfpgan_model_arch requirement(s).
Add Upscaler base class, move from images.
Add a lot of methods to Upscaler.
Re-work all the child upscalers to be proper classes.
Add BSRGAN scaler.
Add ldsr_model_arch class, removing the dependency for another repo that just uses regular latent-diffusion stuff.
Add one universal method that will always find and load new upscaler models without having to add new "setup_model" calls. Still need to add command line params, but that could probably be automated.
Add a "self.scale" property to all Upscalers so the scalers themselves can do "things" in response to the requested upscaling size.
Ensure LDSR doesn't get stuck in a longer loop of "upscale/downscale/upscale" as we try to reach the target upscale size.
Add typehints for IDE sanity.
PEP-8 improvements.
Moar.
This commit is contained in:
d8ahazard
2022-09-29 17:46:23 -05:00
parent 31ad536c33
commit 0dce0df1ee
18 changed files with 1009 additions and 641 deletions

121
modules/upscaler.py Normal file
View File

@@ -0,0 +1,121 @@
import os
from abc import abstractmethod
import PIL
import numpy as np
import torch
from PIL import Image
import modules.shared
from modules import modelloader, shared
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
from modules.paths import models_path
class Upscaler:
name = None
model_path = None
model_name = None
model_url = None
enable = True
filter = None
model = None
user_path = None
scalers: []
tile = True
def __init__(self, create_dirs=False):
self.mod_pad_h = None
self.tile_size = modules.shared.opts.ESRGAN_tile
self.tile_pad = modules.shared.opts.ESRGAN_tile_overlap
self.device = modules.shared.device
self.img = None
self.output = None
self.scale = 1
self.half = not modules.shared.cmd_opts.no_half
self.pre_pad = 0
self.mod_scale = None
if self.name is not None and create_dirs:
self.model_path = os.path.join(models_path, self.name)
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
try:
import cv2
self.can_tile = True
except:
pass
@abstractmethod
def do_upscale(self, img: PIL.Image, selected_model: str):
return img
def upscale(self, img: PIL.Image, scale: int, selected_model: str = None):
self.scale = scale
dest_w = img.width * scale
dest_h = img.height * scale
for i in range(3):
if img.width >= dest_w and img.height >= dest_h:
break
img = self.do_upscale(img, selected_model)
if img.width != dest_w or img.height != dest_h:
img = img.resize(dest_w, dest_h, resample=LANCZOS)
return img
@abstractmethod
def load_model(self, path: str):
pass
def find_models(self, ext_filter=None) -> list:
return modelloader.load_models(model_path=self.model_path, model_url=self.model_url, command_path=self.user_path)
def update_status(self, prompt):
print(f"\nextras: {prompt}", file=shared.progress_print_out)
class UpscalerData:
name = None
data_path = None
scale: int = 4
scaler: Upscaler = None
model: None
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None):
self.name = name
self.data_path = path
self.scaler = upscaler
self.scale = scale
self.model = model
class UpscalerNone(Upscaler):
name = "None"
scalers = []
def load_model(self, path):
pass
def do_upscale(self, img, selected_model=None):
return img
def __init__(self, dirname=None):
super().__init__(False)
self.scalers = [UpscalerData("None", None, self)]
class UpscalerLanczos(Upscaler):
scalers = []
def do_upscale(self, img, selected_model=None):
return img.resize((int(img.width * self.scale), int(img.height * self.scale)), resample=LANCZOS)
def load_model(self, _):
pass
def __init__(self, dirname=None):
super().__init__(False)
self.name = "Lanczos"
self.scalers = [UpscalerData("Lanczos", None, self)]