mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-08-04 19:22:32 +00:00
Enable neural network upscalers for highres. fix
This commit is contained in:
@@ -450,7 +450,27 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
else:
|
||||
decoded_samples = self.sd_model.decode_first_stage(samples)
|
||||
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
|
||||
|
||||
if opts.upscaler_for_hires_fix is None or opts.upscaler_for_hires_fix == "None":
|
||||
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
|
||||
else:
|
||||
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
batch_images = []
|
||||
for i, x_sample in enumerate(lowres_samples):
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
image = Image.fromarray(x_sample)
|
||||
upscaler = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_hires_fix][0]
|
||||
image = upscaler.upscale(image, self.width, self.height)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = np.moveaxis(image, 2, 0)
|
||||
batch_images.append(image)
|
||||
|
||||
decoded_samples = torch.from_numpy(np.array(batch_images))
|
||||
decoded_samples = decoded_samples.to(shared.device)
|
||||
decoded_samples = 2. * decoded_samples - 1.
|
||||
|
||||
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
||||
|
||||
shared.state.nextjob()
|
||||
|
Reference in New Issue
Block a user