Merge pull request #11757 from AUTOMATIC1111/sdxl

SD XL support
This commit is contained in:
AUTOMATIC1111
2023-07-16 12:04:53 +03:00
committed by GitHub
22 changed files with 586 additions and 113 deletions

View File

@@ -15,6 +15,11 @@ import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import ldm.modules.encoders.modules
import sgm.modules.attention
import sgm.modules.diffusionmodules.model
import sgm.modules.diffusionmodules.openaimodel
import sgm.modules.encoders.modules
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
@@ -56,6 +61,9 @@ def apply_optimizations(option=None):
ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
sgm.modules.diffusionmodules.model.nonlinearity = silu
sgm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
if current_optimizer is not None:
current_optimizer.undo()
current_optimizer = None
@@ -89,6 +97,10 @@ def undo_optimizations():
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
sgm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
def fix_checkpoint():
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
@@ -168,6 +180,32 @@ class StableDiffusionModelHijack:
undo_optimizations()
def hijack(self, m):
conditioner = getattr(m, 'conditioner', None)
if conditioner:
text_cond_models = []
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
typename = type(embedder).__name__
if typename == 'FrozenOpenCLIPEmbedder':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if typename == 'FrozenCLIPEmbedder':
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
conditioner.embedders[i] = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if typename == 'FrozenOpenCLIPEmbedder2':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if len(text_cond_models) == 1:
m.cond_stage_model = text_cond_models[0]
else:
m.cond_stage_model = conditioner
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)