Merge pull request #12457 from rubberbaron/shared-hires-prompt-test

prompt editing timeline has separate range for first pass and hires-fix pass
This commit is contained in:
AUTOMATIC1111
2023-08-24 09:41:16 +03:00
committed by GitHub
3 changed files with 42 additions and 16 deletions

View File

@@ -26,7 +26,7 @@ plain: /([^\\\[\]():|]|\\.)+/
%import common.SIGNED_NUMBER -> NUMBER
""")
def get_learned_conditioning_prompt_schedules(prompts, steps):
def get_learned_conditioning_prompt_schedules(prompts, base_steps, hires_steps=None, use_old_scheduling=False):
"""
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
>>> g("test")
@@ -57,18 +57,39 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
[[1, 'female'], [2, 'male'], [3, 'female'], [4, 'male'], [5, 'female'], [6, 'male'], [7, 'female'], [8, 'male'], [9, 'female'], [10, 'male']]
>>> g("[fe|||]male")
[[1, 'female'], [2, 'male'], [3, 'male'], [4, 'male'], [5, 'female'], [6, 'male'], [7, 'male'], [8, 'male'], [9, 'female'], [10, 'male']]
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10, 10)[0]
>>> g("a [b:.5] c")
[[10, 'a b c']]
>>> g("a [b:1.5] c")
[[5, 'a c'], [10, 'a b c']]
"""
if hires_steps is None or use_old_scheduling:
int_offset = 0
flt_offset = 0
steps = base_steps
else:
int_offset = base_steps
flt_offset = 1.0
steps = hires_steps
def collect_steps(steps, tree):
res = [steps]
class CollectSteps(lark.Visitor):
def scheduled(self, tree):
tree.children[-2] = float(tree.children[-2])
if tree.children[-2] < 1:
tree.children[-2] *= steps
tree.children[-2] = min(steps, int(tree.children[-2]))
res.append(tree.children[-2])
s = tree.children[-2]
v = float(s)
if use_old_scheduling:
v = v*steps if v<1 else v
else:
if "." in s:
v = (v - flt_offset) * steps
else:
v = (v - int_offset)
tree.children[-2] = min(steps, int(v))
if tree.children[-2] >= 1:
res.append(tree.children[-2])
def alternate(self, tree):
res.extend(range(1, steps+1))
@@ -134,7 +155,7 @@ class SdConditioning(list):
def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps, hires_steps=None, use_old_scheduling=False):
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
and the sampling step at which this condition is to be replaced by the next one.
@@ -154,7 +175,7 @@ def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
"""
res = []
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps, hires_steps, use_old_scheduling)
cache = {}
for prompt, prompt_schedule in zip(prompts, prompt_schedules):
@@ -229,7 +250,7 @@ class MulticondLearnedConditioning:
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
def get_multicond_learned_conditioning(model, prompts, steps, hires_steps=None, use_old_scheduling=False) -> MulticondLearnedConditioning:
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
For each prompt, the list is obtained by splitting the prompt using the AND separator.
@@ -238,7 +259,7 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps, hires_steps, use_old_scheduling)
res = []
for indexes in res_indexes: