TUN-528: Move cloudflared into a separate repo

This commit is contained in:
Areg Harutyunyan
2018-05-01 18:45:06 -05:00
parent e8c621a648
commit d06fc520c7
4726 changed files with 1763680 additions and 0 deletions

63
vendor/github.com/beorn7/perks/quantile/bench_test.go generated vendored Normal file
View File

@@ -0,0 +1,63 @@
package quantile
import (
"testing"
)
func BenchmarkInsertTargeted(b *testing.B) {
b.ReportAllocs()
s := NewTargeted(Targets)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkInsertTargetedSmallEpsilon(b *testing.B) {
s := NewTargeted(TargetsSmallEpsilon)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkInsertBiased(b *testing.B) {
s := NewLowBiased(0.01)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkInsertBiasedSmallEpsilon(b *testing.B) {
s := NewLowBiased(0.0001)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkQuery(b *testing.B) {
s := NewTargeted(Targets)
for i := float64(0); i < 1e6; i++ {
s.Insert(i)
}
b.ResetTimer()
n := float64(b.N)
for i := float64(0); i < n; i++ {
s.Query(i / n)
}
}
func BenchmarkQuerySmallEpsilon(b *testing.B) {
s := NewTargeted(TargetsSmallEpsilon)
for i := float64(0); i < 1e6; i++ {
s.Insert(i)
}
b.ResetTimer()
n := float64(b.N)
for i := float64(0); i < n; i++ {
s.Query(i / n)
}
}

121
vendor/github.com/beorn7/perks/quantile/example_test.go generated vendored Normal file
View File

@@ -0,0 +1,121 @@
// +build go1.1
package quantile_test
import (
"bufio"
"fmt"
"log"
"os"
"strconv"
"time"
"github.com/beorn7/perks/quantile"
)
func Example_simple() {
ch := make(chan float64)
go sendFloats(ch)
// Compute the 50th, 90th, and 99th percentile.
q := quantile.NewTargeted(map[float64]float64{
0.50: 0.005,
0.90: 0.001,
0.99: 0.0001,
})
for v := range ch {
q.Insert(v)
}
fmt.Println("perc50:", q.Query(0.50))
fmt.Println("perc90:", q.Query(0.90))
fmt.Println("perc99:", q.Query(0.99))
fmt.Println("count:", q.Count())
// Output:
// perc50: 5
// perc90: 16
// perc99: 223
// count: 2388
}
func Example_mergeMultipleStreams() {
// Scenario:
// We have multiple database shards. On each shard, there is a process
// collecting query response times from the database logs and inserting
// them into a Stream (created via NewTargeted(0.90)), much like the
// Simple example. These processes expose a network interface for us to
// ask them to serialize and send us the results of their
// Stream.Samples so we may Merge and Query them.
//
// NOTES:
// * These sample sets are small, allowing us to get them
// across the network much faster than sending the entire list of data
// points.
//
// * For this to work correctly, we must supply the same quantiles
// a priori the process collecting the samples supplied to NewTargeted,
// even if we do not plan to query them all here.
ch := make(chan quantile.Samples)
getDBQuerySamples(ch)
q := quantile.NewTargeted(map[float64]float64{0.90: 0.001})
for samples := range ch {
q.Merge(samples)
}
fmt.Println("perc90:", q.Query(0.90))
}
func Example_window() {
// Scenario: We want the 90th, 95th, and 99th percentiles for each
// minute.
ch := make(chan float64)
go sendStreamValues(ch)
tick := time.NewTicker(1 * time.Minute)
q := quantile.NewTargeted(map[float64]float64{
0.90: 0.001,
0.95: 0.0005,
0.99: 0.0001,
})
for {
select {
case t := <-tick.C:
flushToDB(t, q.Samples())
q.Reset()
case v := <-ch:
q.Insert(v)
}
}
}
func sendStreamValues(ch chan float64) {
// Use your imagination
}
func flushToDB(t time.Time, samples quantile.Samples) {
// Use your imagination
}
// This is a stub for the above example. In reality this would hit the remote
// servers via http or something like it.
func getDBQuerySamples(ch chan quantile.Samples) {}
func sendFloats(ch chan<- float64) {
f, err := os.Open("exampledata.txt")
if err != nil {
log.Fatal(err)
}
sc := bufio.NewScanner(f)
for sc.Scan() {
b := sc.Bytes()
v, err := strconv.ParseFloat(string(b), 64)
if err != nil {
log.Fatal(err)
}
ch <- v
}
if sc.Err() != nil {
log.Fatal(sc.Err())
}
close(ch)
}

2388
vendor/github.com/beorn7/perks/quantile/exampledata.txt generated vendored Normal file

File diff suppressed because it is too large Load Diff

316
vendor/github.com/beorn7/perks/quantile/stream.go generated vendored Normal file
View File

@@ -0,0 +1,316 @@
// Package quantile computes approximate quantiles over an unbounded data
// stream within low memory and CPU bounds.
//
// A small amount of accuracy is traded to achieve the above properties.
//
// Multiple streams can be merged before calling Query to generate a single set
// of results. This is meaningful when the streams represent the same type of
// data. See Merge and Samples.
//
// For more detailed information about the algorithm used, see:
//
// Effective Computation of Biased Quantiles over Data Streams
//
// http://www.cs.rutgers.edu/~muthu/bquant.pdf
package quantile
import (
"math"
"sort"
)
// Sample holds an observed value and meta information for compression. JSON
// tags have been added for convenience.
type Sample struct {
Value float64 `json:",string"`
Width float64 `json:",string"`
Delta float64 `json:",string"`
}
// Samples represents a slice of samples. It implements sort.Interface.
type Samples []Sample
func (a Samples) Len() int { return len(a) }
func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value }
func (a Samples) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type invariant func(s *stream, r float64) float64
// NewLowBiased returns an initialized Stream for low-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the lower ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within (1±Epsilon)*Quantile.
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewLowBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * r
}
return newStream(ƒ)
}
// NewHighBiased returns an initialized Stream for high-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the higher ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewHighBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * (s.n - r)
}
return newStream(ƒ)
}
// NewTargeted returns an initialized Stream concerned with a particular set of
// quantile values that are supplied a priori. Knowing these a priori reduces
// space and computation time. The targets map maps the desired quantiles to
// their absolute errors, i.e. the true quantile of a value returned by a query
// is guaranteed to be within (Quantile±Epsilon).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
func NewTargeted(targetMap map[float64]float64) *Stream {
// Convert map to slice to avoid slow iterations on a map.
// ƒ is called on the hot path, so converting the map to a slice
// beforehand results in significant CPU savings.
targets := targetMapToSlice(targetMap)
ƒ := func(s *stream, r float64) float64 {
var m = math.MaxFloat64
var f float64
for _, t := range targets {
if t.quantile*s.n <= r {
f = (2 * t.epsilon * r) / t.quantile
} else {
f = (2 * t.epsilon * (s.n - r)) / (1 - t.quantile)
}
if f < m {
m = f
}
}
return m
}
return newStream(ƒ)
}
type target struct {
quantile float64
epsilon float64
}
func targetMapToSlice(targetMap map[float64]float64) []target {
targets := make([]target, 0, len(targetMap))
for quantile, epsilon := range targetMap {
t := target{
quantile: quantile,
epsilon: epsilon,
}
targets = append(targets, t)
}
return targets
}
// Stream computes quantiles for a stream of float64s. It is not thread-safe by
// design. Take care when using across multiple goroutines.
type Stream struct {
*stream
b Samples
sorted bool
}
func newStream(ƒ invariant) *Stream {
x := &stream{ƒ: ƒ}
return &Stream{x, make(Samples, 0, 500), true}
}
// Insert inserts v into the stream.
func (s *Stream) Insert(v float64) {
s.insert(Sample{Value: v, Width: 1})
}
func (s *Stream) insert(sample Sample) {
s.b = append(s.b, sample)
s.sorted = false
if len(s.b) == cap(s.b) {
s.flush()
}
}
// Query returns the computed qth percentiles value. If s was created with
// NewTargeted, and q is not in the set of quantiles provided a priori, Query
// will return an unspecified result.
func (s *Stream) Query(q float64) float64 {
if !s.flushed() {
// Fast path when there hasn't been enough data for a flush;
// this also yields better accuracy for small sets of data.
l := len(s.b)
if l == 0 {
return 0
}
i := int(math.Ceil(float64(l) * q))
if i > 0 {
i -= 1
}
s.maybeSort()
return s.b[i].Value
}
s.flush()
return s.stream.query(q)
}
// Merge merges samples into the underlying streams samples. This is handy when
// merging multiple streams from separate threads, database shards, etc.
//
// ATTENTION: This method is broken and does not yield correct results. The
// underlying algorithm is not capable of merging streams correctly.
func (s *Stream) Merge(samples Samples) {
sort.Sort(samples)
s.stream.merge(samples)
}
// Reset reinitializes and clears the list reusing the samples buffer memory.
func (s *Stream) Reset() {
s.stream.reset()
s.b = s.b[:0]
}
// Samples returns stream samples held by s.
func (s *Stream) Samples() Samples {
if !s.flushed() {
return s.b
}
s.flush()
return s.stream.samples()
}
// Count returns the total number of samples observed in the stream
// since initialization.
func (s *Stream) Count() int {
return len(s.b) + s.stream.count()
}
func (s *Stream) flush() {
s.maybeSort()
s.stream.merge(s.b)
s.b = s.b[:0]
}
func (s *Stream) maybeSort() {
if !s.sorted {
s.sorted = true
sort.Sort(s.b)
}
}
func (s *Stream) flushed() bool {
return len(s.stream.l) > 0
}
type stream struct {
n float64
l []Sample
ƒ invariant
}
func (s *stream) reset() {
s.l = s.l[:0]
s.n = 0
}
func (s *stream) insert(v float64) {
s.merge(Samples{{v, 1, 0}})
}
func (s *stream) merge(samples Samples) {
// TODO(beorn7): This tries to merge not only individual samples, but
// whole summaries. The paper doesn't mention merging summaries at
// all. Unittests show that the merging is inaccurate. Find out how to
// do merges properly.
var r float64
i := 0
for _, sample := range samples {
for ; i < len(s.l); i++ {
c := s.l[i]
if c.Value > sample.Value {
// Insert at position i.
s.l = append(s.l, Sample{})
copy(s.l[i+1:], s.l[i:])
s.l[i] = Sample{
sample.Value,
sample.Width,
math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1),
// TODO(beorn7): How to calculate delta correctly?
}
i++
goto inserted
}
r += c.Width
}
s.l = append(s.l, Sample{sample.Value, sample.Width, 0})
i++
inserted:
s.n += sample.Width
r += sample.Width
}
s.compress()
}
func (s *stream) count() int {
return int(s.n)
}
func (s *stream) query(q float64) float64 {
t := math.Ceil(q * s.n)
t += math.Ceil(s.ƒ(s, t) / 2)
p := s.l[0]
var r float64
for _, c := range s.l[1:] {
r += p.Width
if r+c.Width+c.Delta > t {
return p.Value
}
p = c
}
return p.Value
}
func (s *stream) compress() {
if len(s.l) < 2 {
return
}
x := s.l[len(s.l)-1]
xi := len(s.l) - 1
r := s.n - 1 - x.Width
for i := len(s.l) - 2; i >= 0; i-- {
c := s.l[i]
if c.Width+x.Width+x.Delta <= s.ƒ(s, r) {
x.Width += c.Width
s.l[xi] = x
// Remove element at i.
copy(s.l[i:], s.l[i+1:])
s.l = s.l[:len(s.l)-1]
xi -= 1
} else {
x = c
xi = i
}
r -= c.Width
}
}
func (s *stream) samples() Samples {
samples := make(Samples, len(s.l))
copy(samples, s.l)
return samples
}

215
vendor/github.com/beorn7/perks/quantile/stream_test.go generated vendored Normal file
View File

@@ -0,0 +1,215 @@
package quantile
import (
"math"
"math/rand"
"sort"
"testing"
)
var (
Targets = map[float64]float64{
0.01: 0.001,
0.10: 0.01,
0.50: 0.05,
0.90: 0.01,
0.99: 0.001,
}
TargetsSmallEpsilon = map[float64]float64{
0.01: 0.0001,
0.10: 0.001,
0.50: 0.005,
0.90: 0.001,
0.99: 0.0001,
}
LowQuantiles = []float64{0.01, 0.1, 0.5}
HighQuantiles = []float64{0.99, 0.9, 0.5}
)
const RelativeEpsilon = 0.01
func verifyPercsWithAbsoluteEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for quantile, epsilon := range Targets {
n := float64(len(a))
k := int(quantile * n)
if k < 1 {
k = 1
}
lower := int((quantile - epsilon) * n)
if lower < 1 {
lower = 1
}
upper := int(math.Ceil((quantile + epsilon) * n))
if upper > len(a) {
upper = len(a)
}
w, min, max := a[k-1], a[lower-1], a[upper-1]
if g := s.Query(quantile); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", quantile, w, min, max, g)
}
}
}
func verifyLowPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for _, qu := range LowQuantiles {
n := float64(len(a))
k := int(qu * n)
lowerRank := int((1 - RelativeEpsilon) * qu * n)
upperRank := int(math.Ceil((1 + RelativeEpsilon) * qu * n))
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
if g := s.Query(qu); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
}
}
}
func verifyHighPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for _, qu := range HighQuantiles {
n := float64(len(a))
k := int(qu * n)
lowerRank := int((1 - (1+RelativeEpsilon)*(1-qu)) * n)
upperRank := int(math.Ceil((1 - (1-RelativeEpsilon)*(1-qu)) * n))
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
if g := s.Query(qu); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
}
}
}
func populateStream(s *Stream) []float64 {
a := make([]float64, 0, 1e5+100)
for i := 0; i < cap(a); i++ {
v := rand.NormFloat64()
// Add 5% asymmetric outliers.
if i%20 == 0 {
v = v*v + 1
}
s.Insert(v)
a = append(a, v)
}
return a
}
func TestTargetedQuery(t *testing.T) {
rand.Seed(42)
s := NewTargeted(Targets)
a := populateStream(s)
verifyPercsWithAbsoluteEpsilon(t, a, s)
}
func TestTargetedQuerySmallSampleSize(t *testing.T) {
rand.Seed(42)
s := NewTargeted(TargetsSmallEpsilon)
a := []float64{1, 2, 3, 4, 5}
for _, v := range a {
s.Insert(v)
}
verifyPercsWithAbsoluteEpsilon(t, a, s)
// If not yet flushed, results should be precise:
if !s.flushed() {
for φ, want := range map[float64]float64{
0.01: 1,
0.10: 1,
0.50: 3,
0.90: 5,
0.99: 5,
} {
if got := s.Query(φ); got != want {
t.Errorf("want %f for φ=%f, got %f", want, φ, got)
}
}
}
}
func TestLowBiasedQuery(t *testing.T) {
rand.Seed(42)
s := NewLowBiased(RelativeEpsilon)
a := populateStream(s)
verifyLowPercsWithRelativeEpsilon(t, a, s)
}
func TestHighBiasedQuery(t *testing.T) {
rand.Seed(42)
s := NewHighBiased(RelativeEpsilon)
a := populateStream(s)
verifyHighPercsWithRelativeEpsilon(t, a, s)
}
// BrokenTestTargetedMerge is broken, see Merge doc comment.
func BrokenTestTargetedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewTargeted(Targets)
s2 := NewTargeted(Targets)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyPercsWithAbsoluteEpsilon(t, a, s1)
}
// BrokenTestLowBiasedMerge is broken, see Merge doc comment.
func BrokenTestLowBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewLowBiased(RelativeEpsilon)
s2 := NewLowBiased(RelativeEpsilon)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyLowPercsWithRelativeEpsilon(t, a, s2)
}
// BrokenTestHighBiasedMerge is broken, see Merge doc comment.
func BrokenTestHighBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewHighBiased(RelativeEpsilon)
s2 := NewHighBiased(RelativeEpsilon)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyHighPercsWithRelativeEpsilon(t, a, s2)
}
func TestUncompressed(t *testing.T) {
q := NewTargeted(Targets)
for i := 100; i > 0; i-- {
q.Insert(float64(i))
}
if g := q.Count(); g != 100 {
t.Errorf("want count 100, got %d", g)
}
// Before compression, Query should have 100% accuracy.
for quantile := range Targets {
w := quantile * 100
if g := q.Query(quantile); g != w {
t.Errorf("want %f, got %f", w, g)
}
}
}
func TestUncompressedSamples(t *testing.T) {
q := NewTargeted(map[float64]float64{0.99: 0.001})
for i := 1; i <= 100; i++ {
q.Insert(float64(i))
}
if g := q.Samples().Len(); g != 100 {
t.Errorf("want count 100, got %d", g)
}
}
func TestUncompressedOne(t *testing.T) {
q := NewTargeted(map[float64]float64{0.99: 0.01})
q.Insert(3.14)
if g := q.Query(0.90); g != 3.14 {
t.Error("want PI, got", g)
}
}
func TestDefaults(t *testing.T) {
if g := NewTargeted(map[float64]float64{0.99: 0.001}).Query(0.99); g != 0 {
t.Errorf("want 0, got %f", g)
}
}