mirror of
https://github.com/cloudflare/cloudflared.git
synced 2025-07-28 04:59:58 +00:00
TUN-528: Move cloudflared into a separate repo
This commit is contained in:
63
vendor/github.com/beorn7/perks/quantile/bench_test.go
generated
vendored
Normal file
63
vendor/github.com/beorn7/perks/quantile/bench_test.go
generated
vendored
Normal file
@@ -0,0 +1,63 @@
|
||||
package quantile
|
||||
|
||||
import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
func BenchmarkInsertTargeted(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
|
||||
s := NewTargeted(Targets)
|
||||
b.ResetTimer()
|
||||
for i := float64(0); i < float64(b.N); i++ {
|
||||
s.Insert(i)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkInsertTargetedSmallEpsilon(b *testing.B) {
|
||||
s := NewTargeted(TargetsSmallEpsilon)
|
||||
b.ResetTimer()
|
||||
for i := float64(0); i < float64(b.N); i++ {
|
||||
s.Insert(i)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkInsertBiased(b *testing.B) {
|
||||
s := NewLowBiased(0.01)
|
||||
b.ResetTimer()
|
||||
for i := float64(0); i < float64(b.N); i++ {
|
||||
s.Insert(i)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkInsertBiasedSmallEpsilon(b *testing.B) {
|
||||
s := NewLowBiased(0.0001)
|
||||
b.ResetTimer()
|
||||
for i := float64(0); i < float64(b.N); i++ {
|
||||
s.Insert(i)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkQuery(b *testing.B) {
|
||||
s := NewTargeted(Targets)
|
||||
for i := float64(0); i < 1e6; i++ {
|
||||
s.Insert(i)
|
||||
}
|
||||
b.ResetTimer()
|
||||
n := float64(b.N)
|
||||
for i := float64(0); i < n; i++ {
|
||||
s.Query(i / n)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkQuerySmallEpsilon(b *testing.B) {
|
||||
s := NewTargeted(TargetsSmallEpsilon)
|
||||
for i := float64(0); i < 1e6; i++ {
|
||||
s.Insert(i)
|
||||
}
|
||||
b.ResetTimer()
|
||||
n := float64(b.N)
|
||||
for i := float64(0); i < n; i++ {
|
||||
s.Query(i / n)
|
||||
}
|
||||
}
|
121
vendor/github.com/beorn7/perks/quantile/example_test.go
generated
vendored
Normal file
121
vendor/github.com/beorn7/perks/quantile/example_test.go
generated
vendored
Normal file
@@ -0,0 +1,121 @@
|
||||
// +build go1.1
|
||||
|
||||
package quantile_test
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
"strconv"
|
||||
"time"
|
||||
|
||||
"github.com/beorn7/perks/quantile"
|
||||
)
|
||||
|
||||
func Example_simple() {
|
||||
ch := make(chan float64)
|
||||
go sendFloats(ch)
|
||||
|
||||
// Compute the 50th, 90th, and 99th percentile.
|
||||
q := quantile.NewTargeted(map[float64]float64{
|
||||
0.50: 0.005,
|
||||
0.90: 0.001,
|
||||
0.99: 0.0001,
|
||||
})
|
||||
for v := range ch {
|
||||
q.Insert(v)
|
||||
}
|
||||
|
||||
fmt.Println("perc50:", q.Query(0.50))
|
||||
fmt.Println("perc90:", q.Query(0.90))
|
||||
fmt.Println("perc99:", q.Query(0.99))
|
||||
fmt.Println("count:", q.Count())
|
||||
// Output:
|
||||
// perc50: 5
|
||||
// perc90: 16
|
||||
// perc99: 223
|
||||
// count: 2388
|
||||
}
|
||||
|
||||
func Example_mergeMultipleStreams() {
|
||||
// Scenario:
|
||||
// We have multiple database shards. On each shard, there is a process
|
||||
// collecting query response times from the database logs and inserting
|
||||
// them into a Stream (created via NewTargeted(0.90)), much like the
|
||||
// Simple example. These processes expose a network interface for us to
|
||||
// ask them to serialize and send us the results of their
|
||||
// Stream.Samples so we may Merge and Query them.
|
||||
//
|
||||
// NOTES:
|
||||
// * These sample sets are small, allowing us to get them
|
||||
// across the network much faster than sending the entire list of data
|
||||
// points.
|
||||
//
|
||||
// * For this to work correctly, we must supply the same quantiles
|
||||
// a priori the process collecting the samples supplied to NewTargeted,
|
||||
// even if we do not plan to query them all here.
|
||||
ch := make(chan quantile.Samples)
|
||||
getDBQuerySamples(ch)
|
||||
q := quantile.NewTargeted(map[float64]float64{0.90: 0.001})
|
||||
for samples := range ch {
|
||||
q.Merge(samples)
|
||||
}
|
||||
fmt.Println("perc90:", q.Query(0.90))
|
||||
}
|
||||
|
||||
func Example_window() {
|
||||
// Scenario: We want the 90th, 95th, and 99th percentiles for each
|
||||
// minute.
|
||||
|
||||
ch := make(chan float64)
|
||||
go sendStreamValues(ch)
|
||||
|
||||
tick := time.NewTicker(1 * time.Minute)
|
||||
q := quantile.NewTargeted(map[float64]float64{
|
||||
0.90: 0.001,
|
||||
0.95: 0.0005,
|
||||
0.99: 0.0001,
|
||||
})
|
||||
for {
|
||||
select {
|
||||
case t := <-tick.C:
|
||||
flushToDB(t, q.Samples())
|
||||
q.Reset()
|
||||
case v := <-ch:
|
||||
q.Insert(v)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func sendStreamValues(ch chan float64) {
|
||||
// Use your imagination
|
||||
}
|
||||
|
||||
func flushToDB(t time.Time, samples quantile.Samples) {
|
||||
// Use your imagination
|
||||
}
|
||||
|
||||
// This is a stub for the above example. In reality this would hit the remote
|
||||
// servers via http or something like it.
|
||||
func getDBQuerySamples(ch chan quantile.Samples) {}
|
||||
|
||||
func sendFloats(ch chan<- float64) {
|
||||
f, err := os.Open("exampledata.txt")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
sc := bufio.NewScanner(f)
|
||||
for sc.Scan() {
|
||||
b := sc.Bytes()
|
||||
v, err := strconv.ParseFloat(string(b), 64)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
ch <- v
|
||||
}
|
||||
if sc.Err() != nil {
|
||||
log.Fatal(sc.Err())
|
||||
}
|
||||
close(ch)
|
||||
}
|
2388
vendor/github.com/beorn7/perks/quantile/exampledata.txt
generated
vendored
Normal file
2388
vendor/github.com/beorn7/perks/quantile/exampledata.txt
generated
vendored
Normal file
File diff suppressed because it is too large
Load Diff
316
vendor/github.com/beorn7/perks/quantile/stream.go
generated
vendored
Normal file
316
vendor/github.com/beorn7/perks/quantile/stream.go
generated
vendored
Normal file
@@ -0,0 +1,316 @@
|
||||
// Package quantile computes approximate quantiles over an unbounded data
|
||||
// stream within low memory and CPU bounds.
|
||||
//
|
||||
// A small amount of accuracy is traded to achieve the above properties.
|
||||
//
|
||||
// Multiple streams can be merged before calling Query to generate a single set
|
||||
// of results. This is meaningful when the streams represent the same type of
|
||||
// data. See Merge and Samples.
|
||||
//
|
||||
// For more detailed information about the algorithm used, see:
|
||||
//
|
||||
// Effective Computation of Biased Quantiles over Data Streams
|
||||
//
|
||||
// http://www.cs.rutgers.edu/~muthu/bquant.pdf
|
||||
package quantile
|
||||
|
||||
import (
|
||||
"math"
|
||||
"sort"
|
||||
)
|
||||
|
||||
// Sample holds an observed value and meta information for compression. JSON
|
||||
// tags have been added for convenience.
|
||||
type Sample struct {
|
||||
Value float64 `json:",string"`
|
||||
Width float64 `json:",string"`
|
||||
Delta float64 `json:",string"`
|
||||
}
|
||||
|
||||
// Samples represents a slice of samples. It implements sort.Interface.
|
||||
type Samples []Sample
|
||||
|
||||
func (a Samples) Len() int { return len(a) }
|
||||
func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value }
|
||||
func (a Samples) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||
|
||||
type invariant func(s *stream, r float64) float64
|
||||
|
||||
// NewLowBiased returns an initialized Stream for low-biased quantiles
|
||||
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
|
||||
// error guarantees can still be given even for the lower ranks of the data
|
||||
// distribution.
|
||||
//
|
||||
// The provided epsilon is a relative error, i.e. the true quantile of a value
|
||||
// returned by a query is guaranteed to be within (1±Epsilon)*Quantile.
|
||||
//
|
||||
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
|
||||
// properties.
|
||||
func NewLowBiased(epsilon float64) *Stream {
|
||||
ƒ := func(s *stream, r float64) float64 {
|
||||
return 2 * epsilon * r
|
||||
}
|
||||
return newStream(ƒ)
|
||||
}
|
||||
|
||||
// NewHighBiased returns an initialized Stream for high-biased quantiles
|
||||
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
|
||||
// error guarantees can still be given even for the higher ranks of the data
|
||||
// distribution.
|
||||
//
|
||||
// The provided epsilon is a relative error, i.e. the true quantile of a value
|
||||
// returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile).
|
||||
//
|
||||
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
|
||||
// properties.
|
||||
func NewHighBiased(epsilon float64) *Stream {
|
||||
ƒ := func(s *stream, r float64) float64 {
|
||||
return 2 * epsilon * (s.n - r)
|
||||
}
|
||||
return newStream(ƒ)
|
||||
}
|
||||
|
||||
// NewTargeted returns an initialized Stream concerned with a particular set of
|
||||
// quantile values that are supplied a priori. Knowing these a priori reduces
|
||||
// space and computation time. The targets map maps the desired quantiles to
|
||||
// their absolute errors, i.e. the true quantile of a value returned by a query
|
||||
// is guaranteed to be within (Quantile±Epsilon).
|
||||
//
|
||||
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
|
||||
func NewTargeted(targetMap map[float64]float64) *Stream {
|
||||
// Convert map to slice to avoid slow iterations on a map.
|
||||
// ƒ is called on the hot path, so converting the map to a slice
|
||||
// beforehand results in significant CPU savings.
|
||||
targets := targetMapToSlice(targetMap)
|
||||
|
||||
ƒ := func(s *stream, r float64) float64 {
|
||||
var m = math.MaxFloat64
|
||||
var f float64
|
||||
for _, t := range targets {
|
||||
if t.quantile*s.n <= r {
|
||||
f = (2 * t.epsilon * r) / t.quantile
|
||||
} else {
|
||||
f = (2 * t.epsilon * (s.n - r)) / (1 - t.quantile)
|
||||
}
|
||||
if f < m {
|
||||
m = f
|
||||
}
|
||||
}
|
||||
return m
|
||||
}
|
||||
return newStream(ƒ)
|
||||
}
|
||||
|
||||
type target struct {
|
||||
quantile float64
|
||||
epsilon float64
|
||||
}
|
||||
|
||||
func targetMapToSlice(targetMap map[float64]float64) []target {
|
||||
targets := make([]target, 0, len(targetMap))
|
||||
|
||||
for quantile, epsilon := range targetMap {
|
||||
t := target{
|
||||
quantile: quantile,
|
||||
epsilon: epsilon,
|
||||
}
|
||||
targets = append(targets, t)
|
||||
}
|
||||
|
||||
return targets
|
||||
}
|
||||
|
||||
// Stream computes quantiles for a stream of float64s. It is not thread-safe by
|
||||
// design. Take care when using across multiple goroutines.
|
||||
type Stream struct {
|
||||
*stream
|
||||
b Samples
|
||||
sorted bool
|
||||
}
|
||||
|
||||
func newStream(ƒ invariant) *Stream {
|
||||
x := &stream{ƒ: ƒ}
|
||||
return &Stream{x, make(Samples, 0, 500), true}
|
||||
}
|
||||
|
||||
// Insert inserts v into the stream.
|
||||
func (s *Stream) Insert(v float64) {
|
||||
s.insert(Sample{Value: v, Width: 1})
|
||||
}
|
||||
|
||||
func (s *Stream) insert(sample Sample) {
|
||||
s.b = append(s.b, sample)
|
||||
s.sorted = false
|
||||
if len(s.b) == cap(s.b) {
|
||||
s.flush()
|
||||
}
|
||||
}
|
||||
|
||||
// Query returns the computed qth percentiles value. If s was created with
|
||||
// NewTargeted, and q is not in the set of quantiles provided a priori, Query
|
||||
// will return an unspecified result.
|
||||
func (s *Stream) Query(q float64) float64 {
|
||||
if !s.flushed() {
|
||||
// Fast path when there hasn't been enough data for a flush;
|
||||
// this also yields better accuracy for small sets of data.
|
||||
l := len(s.b)
|
||||
if l == 0 {
|
||||
return 0
|
||||
}
|
||||
i := int(math.Ceil(float64(l) * q))
|
||||
if i > 0 {
|
||||
i -= 1
|
||||
}
|
||||
s.maybeSort()
|
||||
return s.b[i].Value
|
||||
}
|
||||
s.flush()
|
||||
return s.stream.query(q)
|
||||
}
|
||||
|
||||
// Merge merges samples into the underlying streams samples. This is handy when
|
||||
// merging multiple streams from separate threads, database shards, etc.
|
||||
//
|
||||
// ATTENTION: This method is broken and does not yield correct results. The
|
||||
// underlying algorithm is not capable of merging streams correctly.
|
||||
func (s *Stream) Merge(samples Samples) {
|
||||
sort.Sort(samples)
|
||||
s.stream.merge(samples)
|
||||
}
|
||||
|
||||
// Reset reinitializes and clears the list reusing the samples buffer memory.
|
||||
func (s *Stream) Reset() {
|
||||
s.stream.reset()
|
||||
s.b = s.b[:0]
|
||||
}
|
||||
|
||||
// Samples returns stream samples held by s.
|
||||
func (s *Stream) Samples() Samples {
|
||||
if !s.flushed() {
|
||||
return s.b
|
||||
}
|
||||
s.flush()
|
||||
return s.stream.samples()
|
||||
}
|
||||
|
||||
// Count returns the total number of samples observed in the stream
|
||||
// since initialization.
|
||||
func (s *Stream) Count() int {
|
||||
return len(s.b) + s.stream.count()
|
||||
}
|
||||
|
||||
func (s *Stream) flush() {
|
||||
s.maybeSort()
|
||||
s.stream.merge(s.b)
|
||||
s.b = s.b[:0]
|
||||
}
|
||||
|
||||
func (s *Stream) maybeSort() {
|
||||
if !s.sorted {
|
||||
s.sorted = true
|
||||
sort.Sort(s.b)
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Stream) flushed() bool {
|
||||
return len(s.stream.l) > 0
|
||||
}
|
||||
|
||||
type stream struct {
|
||||
n float64
|
||||
l []Sample
|
||||
ƒ invariant
|
||||
}
|
||||
|
||||
func (s *stream) reset() {
|
||||
s.l = s.l[:0]
|
||||
s.n = 0
|
||||
}
|
||||
|
||||
func (s *stream) insert(v float64) {
|
||||
s.merge(Samples{{v, 1, 0}})
|
||||
}
|
||||
|
||||
func (s *stream) merge(samples Samples) {
|
||||
// TODO(beorn7): This tries to merge not only individual samples, but
|
||||
// whole summaries. The paper doesn't mention merging summaries at
|
||||
// all. Unittests show that the merging is inaccurate. Find out how to
|
||||
// do merges properly.
|
||||
var r float64
|
||||
i := 0
|
||||
for _, sample := range samples {
|
||||
for ; i < len(s.l); i++ {
|
||||
c := s.l[i]
|
||||
if c.Value > sample.Value {
|
||||
// Insert at position i.
|
||||
s.l = append(s.l, Sample{})
|
||||
copy(s.l[i+1:], s.l[i:])
|
||||
s.l[i] = Sample{
|
||||
sample.Value,
|
||||
sample.Width,
|
||||
math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1),
|
||||
// TODO(beorn7): How to calculate delta correctly?
|
||||
}
|
||||
i++
|
||||
goto inserted
|
||||
}
|
||||
r += c.Width
|
||||
}
|
||||
s.l = append(s.l, Sample{sample.Value, sample.Width, 0})
|
||||
i++
|
||||
inserted:
|
||||
s.n += sample.Width
|
||||
r += sample.Width
|
||||
}
|
||||
s.compress()
|
||||
}
|
||||
|
||||
func (s *stream) count() int {
|
||||
return int(s.n)
|
||||
}
|
||||
|
||||
func (s *stream) query(q float64) float64 {
|
||||
t := math.Ceil(q * s.n)
|
||||
t += math.Ceil(s.ƒ(s, t) / 2)
|
||||
p := s.l[0]
|
||||
var r float64
|
||||
for _, c := range s.l[1:] {
|
||||
r += p.Width
|
||||
if r+c.Width+c.Delta > t {
|
||||
return p.Value
|
||||
}
|
||||
p = c
|
||||
}
|
||||
return p.Value
|
||||
}
|
||||
|
||||
func (s *stream) compress() {
|
||||
if len(s.l) < 2 {
|
||||
return
|
||||
}
|
||||
x := s.l[len(s.l)-1]
|
||||
xi := len(s.l) - 1
|
||||
r := s.n - 1 - x.Width
|
||||
|
||||
for i := len(s.l) - 2; i >= 0; i-- {
|
||||
c := s.l[i]
|
||||
if c.Width+x.Width+x.Delta <= s.ƒ(s, r) {
|
||||
x.Width += c.Width
|
||||
s.l[xi] = x
|
||||
// Remove element at i.
|
||||
copy(s.l[i:], s.l[i+1:])
|
||||
s.l = s.l[:len(s.l)-1]
|
||||
xi -= 1
|
||||
} else {
|
||||
x = c
|
||||
xi = i
|
||||
}
|
||||
r -= c.Width
|
||||
}
|
||||
}
|
||||
|
||||
func (s *stream) samples() Samples {
|
||||
samples := make(Samples, len(s.l))
|
||||
copy(samples, s.l)
|
||||
return samples
|
||||
}
|
215
vendor/github.com/beorn7/perks/quantile/stream_test.go
generated
vendored
Normal file
215
vendor/github.com/beorn7/perks/quantile/stream_test.go
generated
vendored
Normal file
@@ -0,0 +1,215 @@
|
||||
package quantile
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
"sort"
|
||||
"testing"
|
||||
)
|
||||
|
||||
var (
|
||||
Targets = map[float64]float64{
|
||||
0.01: 0.001,
|
||||
0.10: 0.01,
|
||||
0.50: 0.05,
|
||||
0.90: 0.01,
|
||||
0.99: 0.001,
|
||||
}
|
||||
TargetsSmallEpsilon = map[float64]float64{
|
||||
0.01: 0.0001,
|
||||
0.10: 0.001,
|
||||
0.50: 0.005,
|
||||
0.90: 0.001,
|
||||
0.99: 0.0001,
|
||||
}
|
||||
LowQuantiles = []float64{0.01, 0.1, 0.5}
|
||||
HighQuantiles = []float64{0.99, 0.9, 0.5}
|
||||
)
|
||||
|
||||
const RelativeEpsilon = 0.01
|
||||
|
||||
func verifyPercsWithAbsoluteEpsilon(t *testing.T, a []float64, s *Stream) {
|
||||
sort.Float64s(a)
|
||||
for quantile, epsilon := range Targets {
|
||||
n := float64(len(a))
|
||||
k := int(quantile * n)
|
||||
if k < 1 {
|
||||
k = 1
|
||||
}
|
||||
lower := int((quantile - epsilon) * n)
|
||||
if lower < 1 {
|
||||
lower = 1
|
||||
}
|
||||
upper := int(math.Ceil((quantile + epsilon) * n))
|
||||
if upper > len(a) {
|
||||
upper = len(a)
|
||||
}
|
||||
w, min, max := a[k-1], a[lower-1], a[upper-1]
|
||||
if g := s.Query(quantile); g < min || g > max {
|
||||
t.Errorf("q=%f: want %v [%f,%f], got %v", quantile, w, min, max, g)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func verifyLowPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
|
||||
sort.Float64s(a)
|
||||
for _, qu := range LowQuantiles {
|
||||
n := float64(len(a))
|
||||
k := int(qu * n)
|
||||
|
||||
lowerRank := int((1 - RelativeEpsilon) * qu * n)
|
||||
upperRank := int(math.Ceil((1 + RelativeEpsilon) * qu * n))
|
||||
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
|
||||
if g := s.Query(qu); g < min || g > max {
|
||||
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func verifyHighPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
|
||||
sort.Float64s(a)
|
||||
for _, qu := range HighQuantiles {
|
||||
n := float64(len(a))
|
||||
k := int(qu * n)
|
||||
|
||||
lowerRank := int((1 - (1+RelativeEpsilon)*(1-qu)) * n)
|
||||
upperRank := int(math.Ceil((1 - (1-RelativeEpsilon)*(1-qu)) * n))
|
||||
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
|
||||
if g := s.Query(qu); g < min || g > max {
|
||||
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func populateStream(s *Stream) []float64 {
|
||||
a := make([]float64, 0, 1e5+100)
|
||||
for i := 0; i < cap(a); i++ {
|
||||
v := rand.NormFloat64()
|
||||
// Add 5% asymmetric outliers.
|
||||
if i%20 == 0 {
|
||||
v = v*v + 1
|
||||
}
|
||||
s.Insert(v)
|
||||
a = append(a, v)
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func TestTargetedQuery(t *testing.T) {
|
||||
rand.Seed(42)
|
||||
s := NewTargeted(Targets)
|
||||
a := populateStream(s)
|
||||
verifyPercsWithAbsoluteEpsilon(t, a, s)
|
||||
}
|
||||
|
||||
func TestTargetedQuerySmallSampleSize(t *testing.T) {
|
||||
rand.Seed(42)
|
||||
s := NewTargeted(TargetsSmallEpsilon)
|
||||
a := []float64{1, 2, 3, 4, 5}
|
||||
for _, v := range a {
|
||||
s.Insert(v)
|
||||
}
|
||||
verifyPercsWithAbsoluteEpsilon(t, a, s)
|
||||
// If not yet flushed, results should be precise:
|
||||
if !s.flushed() {
|
||||
for φ, want := range map[float64]float64{
|
||||
0.01: 1,
|
||||
0.10: 1,
|
||||
0.50: 3,
|
||||
0.90: 5,
|
||||
0.99: 5,
|
||||
} {
|
||||
if got := s.Query(φ); got != want {
|
||||
t.Errorf("want %f for φ=%f, got %f", want, φ, got)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestLowBiasedQuery(t *testing.T) {
|
||||
rand.Seed(42)
|
||||
s := NewLowBiased(RelativeEpsilon)
|
||||
a := populateStream(s)
|
||||
verifyLowPercsWithRelativeEpsilon(t, a, s)
|
||||
}
|
||||
|
||||
func TestHighBiasedQuery(t *testing.T) {
|
||||
rand.Seed(42)
|
||||
s := NewHighBiased(RelativeEpsilon)
|
||||
a := populateStream(s)
|
||||
verifyHighPercsWithRelativeEpsilon(t, a, s)
|
||||
}
|
||||
|
||||
// BrokenTestTargetedMerge is broken, see Merge doc comment.
|
||||
func BrokenTestTargetedMerge(t *testing.T) {
|
||||
rand.Seed(42)
|
||||
s1 := NewTargeted(Targets)
|
||||
s2 := NewTargeted(Targets)
|
||||
a := populateStream(s1)
|
||||
a = append(a, populateStream(s2)...)
|
||||
s1.Merge(s2.Samples())
|
||||
verifyPercsWithAbsoluteEpsilon(t, a, s1)
|
||||
}
|
||||
|
||||
// BrokenTestLowBiasedMerge is broken, see Merge doc comment.
|
||||
func BrokenTestLowBiasedMerge(t *testing.T) {
|
||||
rand.Seed(42)
|
||||
s1 := NewLowBiased(RelativeEpsilon)
|
||||
s2 := NewLowBiased(RelativeEpsilon)
|
||||
a := populateStream(s1)
|
||||
a = append(a, populateStream(s2)...)
|
||||
s1.Merge(s2.Samples())
|
||||
verifyLowPercsWithRelativeEpsilon(t, a, s2)
|
||||
}
|
||||
|
||||
// BrokenTestHighBiasedMerge is broken, see Merge doc comment.
|
||||
func BrokenTestHighBiasedMerge(t *testing.T) {
|
||||
rand.Seed(42)
|
||||
s1 := NewHighBiased(RelativeEpsilon)
|
||||
s2 := NewHighBiased(RelativeEpsilon)
|
||||
a := populateStream(s1)
|
||||
a = append(a, populateStream(s2)...)
|
||||
s1.Merge(s2.Samples())
|
||||
verifyHighPercsWithRelativeEpsilon(t, a, s2)
|
||||
}
|
||||
|
||||
func TestUncompressed(t *testing.T) {
|
||||
q := NewTargeted(Targets)
|
||||
for i := 100; i > 0; i-- {
|
||||
q.Insert(float64(i))
|
||||
}
|
||||
if g := q.Count(); g != 100 {
|
||||
t.Errorf("want count 100, got %d", g)
|
||||
}
|
||||
// Before compression, Query should have 100% accuracy.
|
||||
for quantile := range Targets {
|
||||
w := quantile * 100
|
||||
if g := q.Query(quantile); g != w {
|
||||
t.Errorf("want %f, got %f", w, g)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestUncompressedSamples(t *testing.T) {
|
||||
q := NewTargeted(map[float64]float64{0.99: 0.001})
|
||||
for i := 1; i <= 100; i++ {
|
||||
q.Insert(float64(i))
|
||||
}
|
||||
if g := q.Samples().Len(); g != 100 {
|
||||
t.Errorf("want count 100, got %d", g)
|
||||
}
|
||||
}
|
||||
|
||||
func TestUncompressedOne(t *testing.T) {
|
||||
q := NewTargeted(map[float64]float64{0.99: 0.01})
|
||||
q.Insert(3.14)
|
||||
if g := q.Query(0.90); g != 3.14 {
|
||||
t.Error("want PI, got", g)
|
||||
}
|
||||
}
|
||||
|
||||
func TestDefaults(t *testing.T) {
|
||||
if g := NewTargeted(map[float64]float64{0.99: 0.001}).Query(0.99); g != 0 {
|
||||
t.Errorf("want 0, got %f", g)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user