TUN-1734: Pin packages at exact versions

This commit is contained in:
Areg Harutyunyan
2019-04-17 12:15:55 -05:00
parent 2e2fa29637
commit bab7583a97
823 changed files with 108625 additions and 22044 deletions

View File

@@ -13,6 +13,8 @@ import (
const format = "Private-key-format: v1.3\n"
var bigIntOne = big.NewInt(1)
// PrivateKeyString converts a PrivateKey to a string. This string has the same
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
// It needs some info from the key (the algorithm), so its a method of the DNSKEY
@@ -31,12 +33,11 @@ func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
prime2 := toBase64(p.Primes[1].Bytes())
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
// and from: http://code.google.com/p/go/issues/detail?id=987
one := big.NewInt(1)
p1 := big.NewInt(0).Sub(p.Primes[0], one)
q1 := big.NewInt(0).Sub(p.Primes[1], one)
exp1 := big.NewInt(0).Mod(p.D, p1)
exp2 := big.NewInt(0).Mod(p.D, q1)
coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0])
p1 := new(big.Int).Sub(p.Primes[0], bigIntOne)
q1 := new(big.Int).Sub(p.Primes[1], bigIntOne)
exp1 := new(big.Int).Mod(p.D, p1)
exp2 := new(big.Int).Mod(p.D, q1)
coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0])
exponent1 := toBase64(exp1.Bytes())
exponent2 := toBase64(exp2.Bytes())
@@ -82,7 +83,7 @@ func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
"Public_value(y): " + pub + "\n"
case ed25519.PrivateKey:
private := toBase64(p[:32])
private := toBase64(p.Seed())
return format +
"Algorithm: " + algorithm + "\n" +
"PrivateKey: " + private + "\n"